GapMind for catabolism of small carbon sources

 

Alignments for a candidate for deoK in Trichodesmium erythraeum IMS101

Align ribokinase (characterized)
to candidate WP_011610662.1 TERY_RS04075 ribokinase

Query= CharProtDB::CH_024905
         (309 letters)



>NCBI__GCF_000014265.1:WP_011610662.1
          Length = 305

 Score =  232 bits (592), Expect = 7e-66
 Identities = 127/301 (42%), Positives = 181/301 (60%), Gaps = 1/301 (0%)

Query: 6   SLVVLGSINADHILNLQSFPTPGETVTGNHYQVAFGGKGANQAVAAGRSGANIAFIACTG 65
           S+++ GS+N D I      PTPGET+ GN++  A GGKGANQAVAA   G     +   G
Sbjct: 2   SIIIFGSVNIDLIATTPRLPTPGETINGNNFFTAGGGKGANQAVAAAGLGIPTKIVGRVG 61

Query: 66  DDSIGESVRQQLATDNIDITPVSVIKGESTGVALIFVNGEGENVIGIHAGANAALSPALV 125
           +DS G+ +   L+T N+D T V V +   TGVA+I V   GEN I +  GAN +++   V
Sbjct: 62  NDSFGQQLLVSLSTANVDTTDVLVDENTHTGVAVIAVGASGENNIIVVPGANHSINNTDV 121

Query: 126 EAQRERIANASALLMQLESPLESVMAAAKIAHQNKTIVALNPAP-ARELPDELLALVDII 184
           E  +  +++ +ALL+QLE P+E  ++AAK+A +    V L+PAP     P++   L+DII
Sbjct: 122 ERLKNLLSDVTALLLQLEIPVEVAISAAKVAQEMGVKVILDPAPMPANFPNDFYNLIDII 181

Query: 185 TPNETEAEKLTGIRVENDEDAAKAAQVLHEKGIRTVLITLGSRGVWASVNGEGQRVPGFR 244
           TPNE EA +L G  V N E A +AA  L  +G++  ++ +G RGV  +   E    P F 
Sbjct: 182 TPNEIEASQLVGFEVNNQETAMEAAVELCHRGVKNAVVKIGDRGVICATKEEAFFQPAFV 241

Query: 245 VQAVDTIAAGDTFNGALITALLEEKPLPEAIRFAHAAAAIAVTRKGAQPSVPWREEIDAF 304
           V+ +DT+AAGD FNG L  AL     L EA+++  AA A+  T+ GAQP++P R+  D F
Sbjct: 242 VKTIDTVAAGDAFNGGLAAALDTGLSLKEAVKWGAAAGALCTTKPGAQPAMPDRKTFDNF 301

Query: 305 L 305
           L
Sbjct: 302 L 302


Lambda     K      H
   0.314    0.131    0.363 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 282
Number of extensions: 17
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 309
Length of database: 305
Length adjustment: 27
Effective length of query: 282
Effective length of database: 278
Effective search space:    78396
Effective search space used:    78396
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 42 (22.0 bits)
S2: 48 (23.1 bits)

Align candidate WP_011610662.1 TERY_RS04075 (ribokinase)
to HMM TIGR02152 (rbsK: ribokinase (EC 2.7.1.15))

# hmmsearch :: search profile(s) against a sequence database
# HMMER 3.3.1 (Jul 2020); http://hmmer.org/
# Copyright (C) 2020 Howard Hughes Medical Institute.
# Freely distributed under the BSD open source license.
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# query HMM file:                  ../tmp/path.carbon/TIGR02152.hmm
# target sequence database:        /tmp/gapView.4025684.genome.faa
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Query:       TIGR02152  [M=298]
Accession:   TIGR02152
Description: D_ribokin_bact: ribokinase
Scores for complete sequences (score includes all domains):
   --- full sequence ---   --- best 1 domain ---    -#dom-
    E-value  score  bias    E-value  score  bias    exp  N  Sequence                             Description
    ------- ------ -----    ------- ------ -----   ---- --  --------                             -----------
   1.5e-100  322.4   7.7   1.7e-100  322.2   7.7    1.0  1  NCBI__GCF_000014265.1:WP_011610662.1  


Domain annotation for each sequence (and alignments):
>> NCBI__GCF_000014265.1:WP_011610662.1  
   #    score  bias  c-Evalue  i-Evalue hmmfrom  hmm to    alifrom  ali to    envfrom  env to     acc
 ---   ------ ----- --------- --------- ------- -------    ------- -------    ------- -------    ----
   1 !  322.2   7.7  1.7e-100  1.7e-100       1     295 [.       3     297 ..       3     300 .. 0.99

  Alignments for each domain:
  == domain 1  score: 322.2 bits;  conditional E-value: 1.7e-100
                             TIGR02152   1 ivvvGSinvDlvlrvkrlpkpGetvkaeefkiaaGGKGANQAvaaarlgaevsmigkvGkDefgeellenlkk 73 
                                           i+++GS+n+Dl+++++rlp pGet+++++f +a GGKGANQAvaaa lg  ++++g+vG+D+fg++ll +l++
  NCBI__GCF_000014265.1:WP_011610662.1   3 IIIFGSVNIDLIATTPRLPTPGETINGNNFFTAGGGKGANQAVAAAGLGIPTKIVGRVGNDSFGQQLLVSLST 75 
                                           89*********************************************************************** PP

                             TIGR02152  74 egidteyvkkvkktstGvAlilvdeegeNsIvvvaGaneeltpedvkaaeekikesdlvllQlEipletveea 146
                                            ++dt+ v  +++t+tGvA+i v  +geN+I+vv Gan++++++dv++ ++ +++ + +llQlEip+e++++a
  NCBI__GCF_000014265.1:WP_011610662.1  76 ANVDTTDVLVDENTHTGVAVIAVGASGENNIIVVPGANHSINNTDVERLKNLLSDVTALLLQLEIPVEVAISA 148
                                           ************************************************************************* PP

                             TIGR02152 147 lkiakkagvkvllnPAPaekkldeellslvdiivpNetEaeiLtgievedledaekaaekllekgvkaviitl 219
                                           +k+a++ gvkv+l+PAP  ++ ++++++l+dii+pNe Ea++L+g ev+++e+a +aa +l ++gvk+ ++++
  NCBI__GCF_000014265.1:WP_011610662.1 149 AKVAQEMGVKVILDPAPMPANFPNDFYNLIDIITPNEIEASQLVGFEVNNQETAMEAAVELCHRGVKNAVVKI 221
                                           ************************************************************************* PP

                             TIGR02152 220 GskGallvskdekklipalkvkavDttaAGDtFigalavaLaegksledavrfanaaaalsVtrkGaqssiPt 292
                                           G++G+++++k+e  + pa+ vk++Dt+aAGD+F+g+la+aL++g sl++av+ ++aa al  t+ Gaq+++P 
  NCBI__GCF_000014265.1:WP_011610662.1 222 GDRGVICATKEEAFFQPAFVVKTIDTVAAGDAFNGGLAAALDTGLSLKEAVKWGAAAGALCTTKPGAQPAMPD 294
                                           ************************************************************************9 PP

                             TIGR02152 293 kee 295
                                           ++ 
  NCBI__GCF_000014265.1:WP_011610662.1 295 RKT 297
                                           986 PP



Internal pipeline statistics summary:
-------------------------------------
Query model(s):                            1  (298 nodes)
Target sequences:                          1  (305 residues searched)
Passed MSV filter:                         1  (1); expected 0.0 (0.02)
Passed bias filter:                        1  (1); expected 0.0 (0.02)
Passed Vit filter:                         1  (1); expected 0.0 (0.001)
Passed Fwd filter:                         1  (1); expected 0.0 (1e-05)
Initial search space (Z):                  1  [actual number of targets]
Domain search space  (domZ):               1  [number of targets reported over threshold]
# CPU time: 0.00u 0.00s 00:00:00.00 Elapsed: 00:00:00.00
# Mc/sec: 20.41
//
[ok]

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory