GapMind for catabolism of small carbon sources

 

Alignments for a candidate for LRA3 in Azorhizobium caulinodans ORS 571

Align L-fuconate dehydratase; L-rhamnonate dehydratase (EC 4.2.1.68; EC 4.2.1.90) (characterized)
to candidate WP_012171801.1 AZC_RS16890 galactarate dehydratase

Query= reanno::BFirm:BPHYT_RS34230
         (431 letters)



>NCBI__GCF_000010525.1:WP_012171801.1
          Length = 507

 Score =  210 bits (534), Expect = 9e-59
 Identities = 148/404 (36%), Positives = 205/404 (50%), Gaps = 24/404 (5%)

Query: 9   TLEGYLRGDGRKGIRNVVAVAYLVECAHHVAREIVTQFREPLDAFDDPSAEREPP-VHLI 67
           T EG+ R DGR G RN + +   V C+  VA  I  +        D P+ +   P  H  
Sbjct: 109 TFEGFRRADGRAGTRNYIGILSSVNCSATVADYIADEVTRSGILADYPNIDGVVPFTHGT 168

Query: 68  GFPGCYPNGYAEKMLERL----TTHPNVGAVLFVSLGCESMNKHYLVDVVR-ASGRPVEV 122
           G  G    G    +L R      THPN  AVL + LGCE      L +      G   + 
Sbjct: 169 GC-GMGSKGEEFDILARTQWGYATHPNFAAVLVIGLGCEVFQIPRLKEAYGIVEGEHFQS 227

Query: 123 LTIQEKGGTRSTIQYGVDWIRGAREQLAAQQKVPMALSELVIGTICGGSDGTSGITANPA 182
           LTIQE GGTR ++  GV  ++       + ++  +A SEL++   CGGSDG SG+TANPA
Sbjct: 228 LTIQESGGTRKSVAAGVARVKEMLAFANSSRRQTVAASELMLALQCGGSDGYSGLTANPA 287

Query: 183 VGRAFDHLIDAGATCIFEETGELVGCEFHMKTRAARPALGDEIVACVAKAARYYSILG-- 240
           +G A D L+  G T I  ET E+ G E  +  RA   A+G +IV  +     Y +  G  
Sbjct: 288 LGAAVDILVRQGGTAILSETPEIFGAEHLLTRRAESEAVGRKIVDLIDWWTDYAARAGGE 347

Query: 241 -HGSFAVGNADGGLTTQEEKSLGAYAKSGASPIVGIIKPGDIPPTGGLYLLDVVPDGEPR 299
            + + + GN  GGLTT  EKSLGA AK G S + G+ +  +     G   +D        
Sbjct: 348 LNNNPSPGNKAGGLTTILEKSLGAVAKGGTSTLRGVYRYAERIDRKGFVYMDT------- 400

Query: 300 FGFPNISDNAEIGELIACGAHVILFTTGRGSVVGSAISPVIKVCANPATYRNLSGDMDVD 359
              P     A  G+ +A GA+V+ FTTGRGS  G   +P IK+  N   YR +  DMD++
Sbjct: 401 ---PGYDPVAATGQ-VAGGANVLCFTTGRGSAYGCKPTPSIKLATNSDLYRRMEEDMDLN 456

Query: 360 AGRILEGRGTLDEVGREVFEQTVAVSRGAASKSETLGH--QEFI 401
            G +LEG  +++E GRE+F+  + V+ G  SKSE LG+   EF+
Sbjct: 457 CGDVLEG-VSIEEKGREIFQTVLDVASGTRSKSELLGYGRNEFV 499


Lambda     K      H
   0.318    0.137    0.408 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 587
Number of extensions: 34
Number of successful extensions: 7
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 2
Number of HSP's successfully gapped: 1
Length of query: 431
Length of database: 507
Length adjustment: 33
Effective length of query: 398
Effective length of database: 474
Effective search space:   188652
Effective search space used:   188652
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory