GapMind for catabolism of small carbon sources

 

Protein WP_012966235.1 in Ferroglobus placidus DSM 10642

Annotation: NCBI__GCF_000025505.1:WP_012966235.1

Length: 247 amino acids

Source: GCF_000025505.1 in NCBI

Candidate for 43 steps in catabolism of small carbon sources

Pathway Step Score Similar to Id. Cov. Bits Other hit Other id. Other bits
L-histidine catabolism Ac3H11_2560 med ABC transporter for L-Histidine, ATPase component (characterized) 46% 97% 208.4 Nitrate transport ATP-binding protein of ABC transporter, component of Nitrate uptake system, NrtABCD 46% 208.0
D-maltose catabolism malK_Bb lo ABC-type maltose transport, ATP binding protein (characterized, see rationale) 38% 70% 162.2 ABC transporter for L-Histidine, ATPase component 46% 208.4
putrescine catabolism potA lo PotG aka B0855, component of Putrescine porter (characterized) 39% 63% 161.8 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-glucosamine (chitosamine) catabolism SM_b21216 lo ABC transporter for D-Glucosamine, ATPase component (characterized) 38% 65% 160.6 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-mannitol catabolism mtlK lo ABC transporter for D-Mannitol, D-Mannose, and D-Sorbitol, ATPase component (characterized) 40% 66% 159.1 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-sorbitol (glucitol) catabolism mtlK lo ABC transporter for D-Mannitol, D-Mannose, and D-Sorbitol, ATPase component (characterized) 40% 66% 159.1 ABC transporter for L-Histidine, ATPase component 46% 208.4
sucrose catabolism thuK lo ABC transporter (characterized, see rationale) 39% 64% 155.2 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-maltose catabolism thuK lo ThuK aka RB0314 aka SMB20328, component of Trehalose/maltose/sucrose porter (trehalose inducible) (characterized) 38% 71% 154.5 ABC transporter for L-Histidine, ATPase component 46% 208.4
trehalose catabolism thuK lo ThuK aka RB0314 aka SMB20328, component of Trehalose/maltose/sucrose porter (trehalose inducible) (characterized) 38% 71% 154.5 ABC transporter for L-Histidine, ATPase component 46% 208.4
N-acetyl-D-glucosamine catabolism SMc02869 lo N-Acetyl-D-glucosamine ABC transport system, ATPase component (characterized) 39% 73% 154.1 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-glucosamine (chitosamine) catabolism SMc02869 lo N-Acetyl-D-glucosamine ABC transport system, ATPase component (characterized) 39% 73% 154.1 ABC transporter for L-Histidine, ATPase component 46% 208.4
lactose catabolism lacK lo ABC transporter for Lactose, ATPase component (characterized) 39% 67% 153.3 ABC transporter for L-Histidine, ATPase component 46% 208.4
L-proline catabolism proV lo glycine betaine/l-proline transport atp-binding protein prov (characterized) 39% 51% 152.5 ABC transporter for L-Histidine, ATPase component 46% 208.4
L-histidine catabolism hutV lo HutV aka HISV aka R02702 aka SMC00670, component of Uptake system for hisitidine, proline, proline-betaine and glycine-betaine (characterized) 38% 83% 152.1 ABC transporter for L-Histidine, ATPase component 46% 208.4
L-proline catabolism hutV lo HutV aka HISV aka R02702 aka SMC00670, component of Uptake system for hisitidine, proline, proline-betaine and glycine-betaine (characterized) 38% 83% 152.1 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-maltose catabolism aglK lo ABC transporter for D-Maltose and D-Trehalose, ATPase component (characterized) 37% 65% 148.3 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-maltose catabolism malK1 lo MalK; aka Sugar ABC transporter, ATP-binding protein, component of The maltose, maltotriose, mannotetraose (MalE1)/maltose, maltotriose, trehalose (MalE2) porter (Nanavati et al., 2005). For MalG1 (823aas) and MalG2 (833aas), the C-terminal transmembrane domain with 6 putative TMSs is preceded by a single N-terminal TMS and a large (600 residue) hydrophilic region showing sequence similarity to MLP1 and 2 (9.A.14; e-12 & e-7) as well as other proteins (characterized) 41% 55% 148.3 ABC transporter for L-Histidine, ATPase component 46% 208.4
sucrose catabolism aglK lo ABC transporter for D-Maltose and D-Trehalose, ATPase component (characterized) 37% 65% 148.3 ABC transporter for L-Histidine, ATPase component 46% 208.4
trehalose catabolism aglK lo ABC transporter for D-Maltose and D-Trehalose, ATPase component (characterized) 37% 65% 148.3 ABC transporter for L-Histidine, ATPase component 46% 208.4
L-proline catabolism opuBA lo BusAA, component of Uptake system for glycine-betaine (high affinity) and proline (low affinity) (OpuAA-OpuABC) or BusAA-ABC of Lactococcus lactis). BusAA, the ATPase subunit, has a C-terminal tandem cystathionine β-synthase (CBS) domain which is the cytoplasmic K+ sensor for osmotic stress (osmotic strength)while the BusABC subunit has the membrane and receptor domains fused to each other (Biemans-Oldehinkel et al., 2006; Mahmood et al., 2006; Gul et al. 2012). An N-terminal amphipathic α-helix of OpuA is necessary for high activity but is not critical for biogenesis or the ionic regulation of transport (characterized) 38% 52% 147.1 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-cellobiose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 37% 65% 140.6 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-glucose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 37% 65% 140.6 ABC transporter for L-Histidine, ATPase component 46% 208.4
lactose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 37% 65% 140.6 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-maltose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 37% 65% 140.6 ABC transporter for L-Histidine, ATPase component 46% 208.4
sucrose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 37% 65% 140.6 ABC transporter for L-Histidine, ATPase component 46% 208.4
trehalose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 37% 65% 140.6 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-cellobiose catabolism gtsD lo Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 36% 64% 139.8 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-glucose catabolism gtsD lo Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 36% 64% 139.8 ABC transporter for L-Histidine, ATPase component 46% 208.4
lactose catabolism gtsD lo Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 36% 64% 139.8 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-maltose catabolism gtsD lo Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 36% 64% 139.8 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-mannose catabolism TT_C0211 lo Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 36% 64% 139.8 ABC transporter for L-Histidine, ATPase component 46% 208.4
sucrose catabolism gtsD lo Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 36% 64% 139.8 ABC transporter for L-Histidine, ATPase component 46% 208.4
trehalose catabolism gtsD lo Sugar-binding transport ATP-binding protein aka MalK1 aka TT_C0211, component of The trehalose/maltose/sucrose/palatinose porter (TTC1627-9) plus MalK1 (ABC protein, shared with 3.A.1.1.24) (Silva et al. 2005; Chevance et al., 2006). The receptor (TTC1627) binds disaccharide alpha-glycosides, namely trehalose (alpha-1,1), sucrose (alpha-1,2), maltose (alpha-1,4), palatinose (alpha-1,6) and glucose (characterized) 36% 64% 139.8 ABC transporter for L-Histidine, ATPase component 46% 208.4
L-fucose catabolism SM_b21106 lo ABC transporter for L-Fucose, ATPase component (characterized) 35% 64% 139.4 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-maltose catabolism malK_Sm lo MalK, component of Maltose/Maltotriose/maltodextrin (up to 7 glucose units) transporters MalXFGK (MsmK (3.A.1.1.28) can probably substitute for MalK; Webb et al., 2008) (characterized) 35% 67% 138.7 ABC transporter for L-Histidine, ATPase component 46% 208.4
trehalose catabolism malK lo MalK, component of Maltose/Maltotriose/maltodextrin (up to 7 glucose units) transporters MalXFGK (MsmK (3.A.1.1.28) can probably substitute for MalK; Webb et al., 2008) (characterized) 35% 67% 138.7 ABC transporter for L-Histidine, ATPase component 46% 208.4
L-glutamate catabolism gltL lo GluA aka CGL1950, component of Glutamate porter (characterized) 33% 98% 137.9 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-xylose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 36% 61% 135.2 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-maltose catabolism malK_Aa lo ABC-type maltose transporter (EC 7.5.2.1) (characterized) 35% 58% 134.8 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-glucosamine (chitosamine) catabolism AO353_21725 lo ABC transporter for D-Glucosamine, putative ATPase component (characterized) 33% 95% 132.1 ABC transporter for L-Histidine, ATPase component 46% 208.4
L-arabinose catabolism xylGsa lo Xylose/arabinose import ATP-binding protein XylG; EC 7.5.2.13 (characterized, see rationale) 35% 84% 130.2 ABC transporter for L-Histidine, ATPase component 46% 208.4
glycerol catabolism glpT lo GlpT, component of Glycerol uptake porter, GlpSTPQV (characterized) 31% 60% 100.1 ABC transporter for L-Histidine, ATPase component 46% 208.4
D-cellobiose catabolism TM0028 lo TM0028, component of β-glucoside porter (Conners et al., 2005). Binds cellobiose, laminaribiose (Nanavati et al. 2006). Regulated by cellobiose-responsive repressor BglR (characterized) 31% 75% 93.2 ABC transporter for L-Histidine, ATPase component 46% 208.4

Sequence Analysis Tools

View WP_012966235.1 at NCBI

Find papers: PaperBLAST

Find functional residues: SitesBLAST

Search for conserved domains

Find the best match in UniProt

Compare to protein structures

Predict transmenbrane helices: Phobius

Predict protein localization: PSORTb

Find homologs in fast.genomics

Fitness BLAST: loading...

Sequence

MALEIRNVKKSFGDLKVLDGVSFEVEKGEFACIVGESGCGKTTLLKIVAGLVKADEGEVL
YDGRELKTEDIAFVFQDDRLLPWRTALENVMFSLEMRMRELDKKRREEIAKSFLELVGLK
GFENYYPHQLSGGMRQRVGICRALAVNPKVLLMDEPFASLDAQTRNRMQLELLRIWERER
KTILFVTHSVDEAVFLADKVVVLSPRPTKVLKVLEINLERPRDRTSPEFIGYRREIINFL
QGSSFLI

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory