GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Allochromatium vinosum DSM 180

Align Aconitate hydratase A; ACN; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; 2-methyl-cis-aconitate hydratase; Iron-responsive protein-like; IRP-like; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate WP_012970720.1 ALVIN_RS07480 aconitate hydratase AcnA

Query= SwissProt::Q8ZP52
         (891 letters)



>NCBI__GCF_000025485.1:WP_012970720.1
          Length = 887

 Score = 1073 bits (2775), Expect = 0.0
 Identities = 550/888 (61%), Positives = 656/888 (73%), Gaps = 16/888 (1%)

Query: 9   SKDTLQAKDKTYHYYSLPLAAKSLGDIARLPKSLKVLLENLLRWQDGESVTDEDIQALAG 68
           +K TL    + Y  + L     S    ARLP S+K+LLENLLR +DG +VT EDI+  + 
Sbjct: 7   AKSTLNVAGQEYEIFKLDAVPNS----ARLPFSIKILLENLLRNEDGVTVTREDIEYFSN 62

Query: 69  WLKNAHADREIAWRPARVLMQDFTGVPAVVDLAAMREAVKRLGGDTSKVNPLSPVDLVID 128
           W   A  D+EI +RPARVLMQDFTGVPAVVDLAAMR+A++ LGGD +++NPL P +LVID
Sbjct: 63  WNPQAEPDKEIQYRPARVLMQDFTGVPAVVDLAAMRDAMRALGGDPTRINPLQPAELVID 122

Query: 129 HSVTVDHFGDDDAFEENVRLEMERNHERYMFLKWGKQAFSRFSVVPPGTGICHQVNLEYL 188
           HSV VDHFG D AF  N  LE +RN ERY FLKWG+QAF  F VVPP TGI HQVN+EYL
Sbjct: 123 HSVQVDHFGSDGAFALNAELEFQRNQERYKFLKWGQQAFDGFKVVPPDTGIVHQVNVEYL 182

Query: 189 GKAVWSELQDGEWIAYPDSLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVSMLIPD 248
            + V+ +  DG   AY D+ VGTDSHTTM+NG+GVLGWGVGGIEAEA+MLGQPVSML+P 
Sbjct: 183 ARVVFPKPVDGTTQAYFDTCVGTDSHTTMVNGIGVLGWGVGGIEAEASMLGQPVSMLVPK 242

Query: 249 VVGFKLTGKLREGITATDLVLTVTQMLRKHGVVGKFVEFYGDGLDSLPLADRATIANMSP 308
           VVGFKLTG L+EG+TATDLVLT+ + LRKHGVVGKFVEFYG  + SLP+ +R TIANM P
Sbjct: 243 VVGFKLTGTLKEGVTATDLVLTIVEQLRKHGVVGKFVEFYGPAIASLPMGERNTIANMGP 302

Query: 309 EYGATCGFFPIDAITLEYMRLSGRSDDLVELVETYAKAQGMWRN-PGDEPVFTSTLELDM 367
           EYGATCG FPID +TL+Y+RL+GR +  + LVE Y KAQG+W      E  ++ TLELD+
Sbjct: 303 EYGATCGLFPIDQVTLDYLRLTGRDEAQIALVEAYCKAQGVWHTADAPEAEYSETLELDL 362

Query: 368 GDVEASLAGPKRPQDRVALGDV----PKAFAA-SAELELNTAQRDRQPVDYTMNGQPYQL 422
           GDV  SLAGPKRPQDRVAL D+    PKA AA  AE  L T    +  +D    GQ  ++
Sbjct: 363 GDVAPSLAGPKRPQDRVALTDMASHFPKALAALKAERNLPTKGAAKAVID----GQEVEI 418

Query: 423 PDGAVVIAAITSCTNTSNPSVLMAAGLLAKKAVTLGLKRQPWVKASLAPGSKVVSDYLAQ 482
            DG++V+AAITSCTNTSNPSVL+ AGL+AKKAV LGLKR PWVK +  PGS  V+ YL +
Sbjct: 419 SDGSIVVAAITSCTNTSNPSVLIGAGLVAKKAVALGLKRAPWVKTAFGPGSMAVTRYLDR 478

Query: 483 AKLTPYLDELGFNLVGYGCTTCIGNSGPLPEPIETAIKKGDLTVGAVLSGNRNFEGRIHP 542
           A LT  L  LGF+ VGYGCT CIGN+GPLPEP+  AI   +L   ++LSGNRNFEGR+H 
Sbjct: 479 AGLTEPLKALGFHNVGYGCTVCIGNTGPLPEPVSKAIADNELCAVSILSGNRNFEGRVHA 538

Query: 543 LVKTNWLASPPLVVAYALAGNMNINLATDPLGYDRKGDPVYLKDIWPSAQEIARAV-ELV 601
            V+ N+LASPPLVVAYA+AG ++I+   DPL  D +G+PVYLKDIWP+  E+  A+ E V
Sbjct: 539 EVRMNYLASPPLVVAYAIAGRIDIDPYNDPLTTDAQGNPVYLKDIWPTQDEVNAAIAEFV 598

Query: 602 SSDMFRKEYAEVFEGTEEWKSIQVESSDTYGWQSDSTYIRLSPFFDEMQAQPAPVKDIHG 661
           +   F   YA+VF G   W+S+   ++ TY W +DSTYIR  P+F  M  + APV+DI  
Sbjct: 599 TPAEFTAAYADVFAGDARWQSLDAVATQTYDWPADSTYIRNPPYFQGMSLEVAPVEDISR 658

Query: 662 ARILAMLGDSVTTDHISPAGSIKPDSPAGRYLQNHGVERKDFNSYGSRRGNHEVMMRGTF 721
           AR LA+LGDS+TTDHISPAGSIKP+SPAG+YL  HGVE KDFNS GSRRGNHEVMMRGTF
Sbjct: 659 ARCLAVLGDSITTDHISPAGSIKPNSPAGKYLIEHGVEPKDFNSLGSRRGNHEVMMRGTF 718

Query: 722 ANIRIRNEMLPGVEGGMTRHLPGTEAMSIYDAAMLYQQEKTPLAVIAGKEYGSGSSRDWA 781
           ANIR+RN M PG EGG+T H P  E +SIYDAAM YQ E TP  VIAGKEYGSGSSRDWA
Sbjct: 719 ANIRLRNLMAPGTEGGVTLHQPSQEQLSIYDAAMRYQAEGTPAIVIAGKEYGSGSSRDWA 778

Query: 782 AKGPRLLGIRVVIAESFERIHRSNLIGMGILPLEFPQGVTRKTLGLTGEEVIDIADLQNL 841
           AKGPRLLGIR VIAES+ERIHRSNL+GMGILPL+F  G    +LGL G E  DI  L N 
Sbjct: 779 AKGPRLLGIRAVIAESYERIHRSNLVGMGILPLQFLAGENAASLGLIGTETFDIVGL-NG 837

Query: 842 RPGATIPVTLTRSDGSKETVPCRCRIDTATELTYYQNDGILHYVIRNM 889
                + V  T +DGS +T   R RIDT  E+ YY++ GIL YV+R +
Sbjct: 838 GEAKQVEVRATGADGSVKTFQARVRIDTPNEVDYYRHGGILQYVLRKL 885


Lambda     K      H
   0.317    0.135    0.401 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2129
Number of extensions: 94
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 891
Length of database: 887
Length adjustment: 43
Effective length of query: 848
Effective length of database: 844
Effective search space:   715712
Effective search space used:   715712
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory