GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gabT in Sulfuricurvum kujiense DSM 16994

Align 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19) (characterized)
to candidate WP_013450014.1 SULKU_RS13855 aspartate aminotransferase family protein

Query= BRENDA::Q0K2K2
         (423 letters)



>NCBI__GCF_000183725.1:WP_013450014.1
          Length = 388

 Score =  176 bits (446), Expect = 1e-48
 Identities = 129/403 (32%), Positives = 197/403 (48%), Gaps = 45/403 (11%)

Query: 29  DRAENATLWDVEGRAYTDFAAGIAVLNTGHRHPRVMQAIAAQLERFTHTA--YQIVPYQG 86
           +R +NATL D EG+ Y DFAAG+AV + GH + R+ +AI+ Q  +  H +  Y+I P + 
Sbjct: 18  ERGDNATLCDSEGKEYIDFAAGVAVCSVGHGNCRLARAISDQAAKILHVSNLYRIEPQE- 76

Query: 87  YVTLAERINALVPIQGLNKTALF-TTGAEAVENAIKIARAHTGRPG------VIAFSGAF 139
                E    +V + G +    F  +G EA E AIKIAR +  R G      +I    +F
Sbjct: 77  -----ECARRIVELSGYDMRCFFGNSGTEANEGAIKIARKYGERDGSIKRYKIITLENSF 131

Query: 140 HGRTLLGMALTGKVAPYKIGFGPFPSDIYHAPFPSALHGVSTERALQALEGLFKTDIDPA 199
           HGRT+  +  TG+ + +   FGP+P    +A              ++ +E L    ID  
Sbjct: 132 HGRTITALKATGQASKHDY-FGPYPDGFVYAA------------NVEEIESL----IDET 174

Query: 200 RVAAIIVEPVQGEGGFQAAPADFMRGLRAVCDQHGIVLIADEVQTGFGRTGKMFAMSHHD 259
            VA +++E VQGEGG Q      ++ L A+     I+LI DEVQTG  R G   A  ++ 
Sbjct: 175 TVA-VMIELVQGEGGVQPLDKQKVQNLSALLKSKDILLIVDEVQTGIYRCGSFLASHYYG 233

Query: 260 VEPDLITMAKSLAGGMPLSAVSGRAAIMDAPLPGGLGGTYAGNPLAVAAAHAVIDVIEEE 319
           + PD+IT+AK L GG+P+  V  R  + +    G  G T+ GN L+  AA+ V+D++E  
Sbjct: 234 ITPDVITLAKGLGGGVPIGVVMTR--LKEIFSYGDHGSTFGGNYLSTVAANEVLDILEAY 291

Query: 320 KLCERSASLGQQLREHLLAQRKHCPAMAEVR-GLGSMVAAEFCDPATGQPSAEHAKRVQT 378
                           L +   H P +   R G+G M      D       +E   ++  
Sbjct: 292 NKSGEMMEHQNYFETSLKSFALHYPDIFTERVGIGMMQGLRVID-------SEVLSKIID 344

Query: 379 RALEAGLVLLTCGTYGNVIRFLYPLTIPQAQFDAALAVLTQAL 421
            A E G++++  G   N +RF+ PLTI +++ D     L  A+
Sbjct: 345 SAFEIGVLVIKSGR--NTLRFVPPLTISKSEMDEGFRRLNSAM 385


Lambda     K      H
   0.321    0.136    0.400 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 372
Number of extensions: 23
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 423
Length of database: 388
Length adjustment: 31
Effective length of query: 392
Effective length of database: 357
Effective search space:   139944
Effective search space used:   139944
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.9 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory