GapMind for catabolism of small carbon sources

 

Alignments for a candidate for glcE in Derxia gummosa DSM 723

Align D-lactate oxidase, FAD binding subunit (EC 1.1.3.15) (characterized)
to candidate WP_028311103.1 H566_RS0108480 glycolate oxidase subunit GlcE

Query= reanno::Cup4G11:RR42_RS17310
         (374 letters)



>NCBI__GCF_000482785.1:WP_028311103.1
          Length = 405

 Score =  383 bits (983), Expect = e-111
 Identities = 213/409 (52%), Positives = 261/409 (63%), Gaps = 57/409 (13%)

Query: 12  LTAFRDAIRHATGTRTPLRLRGGGSKDFYGQHP--------------QGTLLDTRAYSGI 57
           +  +R  +  A  T   L LRGGGSKDFYG  P              +  LLDTR Y+G+
Sbjct: 8   IEGWRARVLDAGRTGRALVLRGGGSKDFYGGVPVADARGAGQSGASAEADLLDTRLYAGV 67

Query: 58  VDYDPPELVITARCGTPLAQIEAALAERRQMLAFEPPHFSTGADGSDVATIGGAVAAGLS 117
           V Y+P EL +TARCGTPLA++EA L E+ QM AFEPPHF  GA      T+GG  AAGLS
Sbjct: 68  VAYEPTELYVTARCGTPLAELEALLGEKGQMFAFEPPHFGAGA------TVGGMFAAGLS 121

Query: 118 GPRRQAVGALRDFVLGTRVMDGRGDVLSFGGQVMKNVAGYDVSRLMSGSLGTLGLILEVS 177
           GPRR + GALRD+VLG R++DG+G +L+FGGQVMKNVAGYDVSR+++GSLG LG++ EV+
Sbjct: 122 GPRRPSAGALRDYVLGLRLLDGQGRLLNFGGQVMKNVAGYDVSRMLAGSLGVLGIVTEVT 181

Query: 178 LKVLPVPFDDATLRFALDEAAALDRLNDWGGQPLPIAASAWHDGVLHLRLSGAAAALRAA 237
           LK+LP P ++ATLRF L E AAL  LN WGGQPLPI+ASAW  GVL +RLSG  AA+RAA
Sbjct: 182 LKLLPRPVEEATLRFELGEDAALAVLNRWGGQPLPISASAWEGGVLTVRLSGQRAAVRAA 241

Query: 238 RARLGGEAVDAAQADALWRALREHSHAFFAPVQAGRALWRIAVPTTAAPLALPGG----- 292
           R +LGGE VD   ADA W ALRE +  FF P+ AG ALWR+++PTTA      G      
Sbjct: 242 REQLGGERVD--DADAFWAALREQTAPFFRPLAAGEALWRLSLPTTAPAFRAGGAAVAAS 299

Query: 293 -------------------------QLIEWGGGQRWWLGGSDSAADSAIVRAAAKAAGGH 327
                                    QL+EWGGGQRW    +++      +RAAA A GGH
Sbjct: 300 AAGTASDAGLLPLPPAALQALASAPQLVEWGGGQRWLHAPAEAGP---ALRAAASALGGH 356

Query: 328 ATLFRNGD--KAVGVFTPLSAPVAAIHQRLKATFDPAGIFNPQRMYAGL 374
           ATLFR  D  +A GVFT   A +  +H  LKA FDPA +FN  R++  L
Sbjct: 357 ATLFRGTDAARAAGVFTHPGAALMRVHAGLKAEFDPARVFNRARLFPEL 405


Lambda     K      H
   0.321    0.136    0.414 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 509
Number of extensions: 30
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 3
Number of HSP's successfully gapped: 1
Length of query: 374
Length of database: 405
Length adjustment: 30
Effective length of query: 344
Effective length of database: 375
Effective search space:   129000
Effective search space used:   129000
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory