GapMind for catabolism of small carbon sources

 

Alignments for a candidate for prpF in Derxia gummosa DSM 723

Align 2-methyl-aconitate isomerase; Cis-trans isomerase; EC 5.3.3.- (characterized)
to candidate WP_028313027.1 H566_RS0121285 2-methylaconitate cis-trans isomerase PrpF

Query= SwissProt::Q937N7
         (396 letters)



>NCBI__GCF_000482785.1:WP_028313027.1
          Length = 397

 Score =  656 bits (1693), Expect = 0.0
 Identities = 328/397 (82%), Positives = 354/397 (89%), Gaps = 1/397 (0%)

Query: 1   MTHVPQIKIPATYIRGGTSKGVFFRLQDLPETAQVPGPARDALLMRVIGSPDPYGKQIDG 60
           M HVPQ+KIPATYIRGGTSKGVFFRLQDLPE  Q PG ARD LL+RVIGSPDPYGKQ DG
Sbjct: 1   MAHVPQVKIPATYIRGGTSKGVFFRLQDLPERCQQPGKARDKLLLRVIGSPDPYGKQTDG 60

Query: 61  MGAATSSTSKTVILSKSTRPDHDVDYLFGQVSIDQPFVDWSGNCGNLSAAVGPFAISAGL 120
           MG ATSSTSKTVIL+KS++PDHDVDYLFGQVSID+ FVDWSGNCGNLSAAVG FAIS GL
Sbjct: 61  MGGATSSTSKTVILAKSSKPDHDVDYLFGQVSIDKAFVDWSGNCGNLSAAVGSFAISGGL 120

Query: 121 VDASRIPHNGVAVVRIWQANIGKTIIGHVPVTNGEVQETGDFELDGVTFPAAEVQLEFMD 180
           VD +R+P NG+  VRIWQANI KTI+ HVPVTNGEVQETGDFELDGVTFPAAEVQLEF+D
Sbjct: 121 VDPARVPENGICTVRIWQANISKTIVAHVPVTNGEVQETGDFELDGVTFPAAEVQLEFLD 180

Query: 181 PAAEEEG-AGGAMFPTGNVVDDLEVPAVGTLKATMINAGIPTIFVNAESIGYTGTELQDA 239
           PA E EG  GG+MFPTGN+VDDLEVP +GTLKATMINAGIPTIFVNA++IGYTGTELQDA
Sbjct: 181 PADEGEGDGGGSMFPTGNLVDDLEVPGLGTLKATMINAGIPTIFVNADAIGYTGTELQDA 240

Query: 240 INSDTRALAMFEDHPCYGALRMGLIKNVDEAAKRQHTPKVAFVRQAGDYVASSGKKVAAA 299
           IN D +ALAMFE+   +GALRMGLIK + EAAKRQHTPK+AFV     Y ASSGK V A 
Sbjct: 241 INGDAKALAMFENLRAHGALRMGLIKELGEAAKRQHTPKIAFVAPPTTYTASSGKTVEAG 300

Query: 300 DVDLLVRALSMGKLHHAMMGTAAVAIGTAAAIPGTLVNLAAGGGERNAVRFGHPSGTLRV 359
           ++DL VRALSMGKLHHAMMGTAAVAIGTAAAIPGTLVNLAAGGGER AVRFGHPSGTLRV
Sbjct: 301 EIDLCVRALSMGKLHHAMMGTAAVAIGTAAAIPGTLVNLAAGGGERAAVRFGHPSGTLRV 360

Query: 360 GAEAQQVDGEWAVKKAIMSRSARVLMEGWVRVPGDAF 396
           GAEA+Q DGEW V KAIMSRSARVLMEG+VRVPGD+F
Sbjct: 361 GAEAKQADGEWTVTKAIMSRSARVLMEGFVRVPGDSF 397


Lambda     K      H
   0.317    0.134    0.394 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 618
Number of extensions: 14
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 396
Length of database: 397
Length adjustment: 31
Effective length of query: 365
Effective length of database: 366
Effective search space:   133590
Effective search space used:   133590
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory