GapMind for catabolism of small carbon sources

 

Protein WP_028485763.1 in Thiomicrorhabdus chilensis DSM 12352

Annotation: NCBI__GCF_000483485.1:WP_028485763.1

Length: 357 amino acids

Source: GCF_000483485.1 in NCBI

Candidate for 29 steps in catabolism of small carbon sources

Pathway Step Score Similar to Id. Cov. Bits Other hit Other id. Other bits
L-arabinose catabolism xacJ lo Xylose/arabinose import ATP-binding protein XacJ; EC 7.5.2.13 (characterized, see rationale) 33% 81% 155.2 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-maltose catabolism malK_Aa lo ABC-type maltose transporter (EC 7.5.2.1) (characterized) 32% 88% 148.3 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-maltose catabolism malK1 lo MalK; aka Sugar ABC transporter, ATP-binding protein, component of The maltose, maltotriose, mannotetraose (MalE1)/maltose, maltotriose, trehalose (MalE2) porter (Nanavati et al., 2005). For MalG1 (823aas) and MalG2 (833aas), the C-terminal transmembrane domain with 6 putative TMSs is preceded by a single N-terminal TMS and a large (600 residue) hydrophilic region showing sequence similarity to MLP1 and 2 (9.A.14; e-12 & e-7) as well as other proteins (characterized) 37% 61% 143.3 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
trehalose catabolism thuK lo MalK; aka Sugar ABC transporter, ATP-binding protein, component of The maltose, maltotriose, mannotetraose (MalE1)/maltose, maltotriose, trehalose (MalE2) porter (Nanavati et al., 2005). For MalG1 (823aas) and MalG2 (833aas), the C-terminal transmembrane domain with 6 putative TMSs is preceded by a single N-terminal TMS and a large (600 residue) hydrophilic region showing sequence similarity to MLP1 and 2 (9.A.14; e-12 & e-7) as well as other proteins (characterized) 37% 61% 143.3 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
N-acetyl-D-glucosamine catabolism SMc02869 lo N-Acetyl-D-glucosamine ABC transport system, ATPase component (characterized) 33% 87% 137.9 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-glucosamine (chitosamine) catabolism SMc02869 lo N-Acetyl-D-glucosamine ABC transport system, ATPase component (characterized) 33% 87% 137.9 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
xylitol catabolism Dshi_0546 lo ABC transporter for Xylitol, ATPase component (characterized) 36% 63% 132.5 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-cellobiose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 32% 91% 130.6 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-glucose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 32% 91% 130.6 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
lactose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 32% 91% 130.6 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-maltose catabolism aglK lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 32% 91% 130.6 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-maltose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 32% 91% 130.6 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
sucrose catabolism aglK lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 32% 91% 130.6 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
sucrose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 32% 91% 130.6 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
trehalose catabolism aglK lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 32% 91% 130.6 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
trehalose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 32% 91% 130.6 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-cellobiose catabolism SMc04256 lo ABC transporter for D-Cellobiose and D-Salicin, ATPase component (characterized) 39% 54% 125.6 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-maltose catabolism thuK lo ABC transporter for D-Maltose and D-Trehalose, ATPase component (characterized) 39% 60% 125.2 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
myo-inositol catabolism PGA1_c07320 lo Inositol transport system ATP-binding protein (characterized) 33% 87% 94.7 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-fructose catabolism frcA lo Fructose import ATP-binding protein FrcA; EC 7.5.2.- (characterized) 31% 80% 89.4 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-mannose catabolism frcA lo Fructose import ATP-binding protein FrcA; EC 7.5.2.- (characterized) 31% 80% 89.4 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-ribose catabolism frcA lo Fructose import ATP-binding protein FrcA; EC 7.5.2.- (characterized) 31% 80% 89.4 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
sucrose catabolism frcA lo Fructose import ATP-binding protein FrcA; EC 7.5.2.- (characterized) 31% 80% 89.4 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-cellobiose catabolism mglA lo glucose transporter, ATPase component (characterized) 33% 73% 87 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-glucose catabolism mglA lo glucose transporter, ATPase component (characterized) 33% 73% 87 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
lactose catabolism mglA lo glucose transporter, ATPase component (characterized) 33% 73% 87 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
D-maltose catabolism mglA lo glucose transporter, ATPase component (characterized) 33% 73% 87 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
sucrose catabolism mglA lo glucose transporter, ATPase component (characterized) 33% 73% 87 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5
trehalose catabolism mglA lo glucose transporter, ATPase component (characterized) 33% 73% 87 ABC-type molybdate transporter (EC 7.3.2.5) 37% 211.5

Sequence Analysis Tools

Find papers: PaperBLAST

Find functional residues: SitesBLAST

Search for conserved domains

Find the best match in UniProt

Compare to protein structures

Predict transmenbrane helices: Phobius

Predict protein localization: PSORTb

Find homologs in fast.genomics

Fitness BLAST: loading...

Sequence

MMHGNLRLRLGDFELNSGDFSLKLEGVTVLFGRSGSGKSTLLRAISGLDKRTEGSLNVKG
QVWQEGKRRASPQSRNIGFVFQDAALFPHMTVRQNLMYGLKRLPKGVAPFSDAEFSEIVS
RVGIADKLDRAVTFLSGGERQRVAIARALLSRPELLCMDEPLSALDWRSKAELLSLIEEV
VAAYRLPVLYITHAPAEVERLADRILFMSRGRIETIETLQEALARPDSPLFDEQGAVSVL
EGQPKPIEAGLRPIVMGEDSLWLPDVSELKKETVRVRVLARDVSLALSDPQDLSIINHFK
TTISELIPQGDHRTLVRLQMADGQKLFAEVTAHSAQRLNLHVGQSVYALIKSVAMTE

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory