GapMind for catabolism of small carbon sources

 

Protein WP_028485930.1 in Thiomicrorhabdus chilensis DSM 12352

Annotation: NCBI__GCF_000483485.1:WP_028485930.1

Length: 309 amino acids

Source: GCF_000483485.1 in NCBI

Candidate for 52 steps in catabolism of small carbon sources

Pathway Step Score Similar to Id. Cov. Bits Other hit Other id. Other bits
L-histidine catabolism Ac3H11_2560 hi ABC transporter for L-Histidine, ATPase component (characterized) 49% 94% 246.5 Bicarbonate transport ATP-binding protein CmpC; EC 7.6.2.- 46% 203.8
L-histidine catabolism hutV med ABC transporter for L-Histidine, ATPase component (characterized) 45% 73% 156 ABC transporter for L-Histidine, ATPase component 49% 246.5
N-acetyl-D-glucosamine catabolism SMc02869 lo N-Acetyl-D-glucosamine ABC transport system, ATPase component (characterized) 43% 61% 166 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-glucosamine (chitosamine) catabolism SMc02869 lo N-Acetyl-D-glucosamine ABC transport system, ATPase component (characterized) 43% 61% 166 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-sorbitol (glucitol) catabolism mtlK lo ABC transporter for D-Sorbitol, ATPase component (characterized) 35% 75% 163.3 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-mannitol catabolism mtlK lo ABC transporter for D-mannitol and D-mannose, ATPase component (characterized) 39% 58% 161.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
putrescine catabolism potA lo PotG aka B0855, component of Putrescine porter (characterized) 33% 74% 161 ABC transporter for L-Histidine, ATPase component 49% 246.5
xylitol catabolism Dshi_0546 lo ABC transporter for Xylitol, ATPase component (characterized) 42% 63% 160.2 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-maltose catabolism malK_Bb lo ABC-type maltose transport, ATP binding protein (characterized, see rationale) 42% 59% 156 ABC transporter for L-Histidine, ATPase component 49% 246.5
lactose catabolism lacK lo LacK, component of Lactose porter (characterized) 37% 67% 154.5 ABC transporter for L-Histidine, ATPase component 49% 246.5
L-proline catabolism hutV lo HutV aka HISV aka R02702 aka SMC00670, component of Uptake system for hisitidine, proline, proline-betaine and glycine-betaine (characterized) 39% 89% 154.1 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-maltose catabolism thuK lo ThuK aka RB0314 aka SMB20328, component of Trehalose/maltose/sucrose porter (trehalose inducible) (characterized) 41% 62% 152.9 ABC transporter for L-Histidine, ATPase component 49% 246.5
sucrose catabolism thuK lo ThuK aka RB0314 aka SMB20328, component of Trehalose/maltose/sucrose porter (trehalose inducible) (characterized) 41% 62% 152.9 ABC transporter for L-Histidine, ATPase component 49% 246.5
trehalose catabolism thuK lo ThuK aka RB0314 aka SMB20328, component of Trehalose/maltose/sucrose porter (trehalose inducible) (characterized) 41% 62% 152.9 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-maltose catabolism malK lo ABC-type maltose transporter (subunit 3/3) (EC 7.5.2.1) (characterized) 35% 70% 152.5 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-maltose catabolism malK_Sm lo MalK, component of Maltose/Maltotriose/maltodextrin (up to 7 glucose units) transporters MalXFGK (MsmK (3.A.1.1.28) can probably substitute for MalK; Webb et al., 2008) (characterized) 35% 67% 151.8 ABC transporter for L-Histidine, ATPase component 49% 246.5
trehalose catabolism malK lo MalK, component of Maltose/Maltotriose/maltodextrin (up to 7 glucose units) transporters MalXFGK (MsmK (3.A.1.1.28) can probably substitute for MalK; Webb et al., 2008) (characterized) 35% 67% 151.8 ABC transporter for L-Histidine, ATPase component 49% 246.5
L-arabinose catabolism xacJ lo Xylose/arabinose import ATP-binding protein XacJ; EC 7.5.2.13 (characterized, see rationale) 38% 56% 151.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-maltose catabolism aglK lo ABC transporter for D-Maltose and D-Trehalose, ATPase component (characterized) 40% 63% 151.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
sucrose catabolism aglK lo ABC transporter for D-Maltose and D-Trehalose, ATPase component (characterized) 40% 63% 151.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
trehalose catabolism aglK lo ABC transporter for D-Maltose and D-Trehalose, ATPase component (characterized) 40% 63% 151.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
L-asparagine catabolism glnQ lo Glutamine ABC transporter ATP-binding protein, component of Glutamine transporter, GlnQP. Takes up glutamine, asparagine and glutamate which compete for each other for binding both substrate and the transmembrane protein constituent of the system (Fulyani et al. 2015). Tandem substrate binding domains (SBDs) differ in substrate specificity and affinity, allowing cells to efficiently accumulate different amino acids via a single ABC transporter. Analysis revealed the roles of individual residues in determining the substrate affinity (characterized) 39% 95% 150.2 ABC transporter for L-Histidine, ATPase component 49% 246.5
L-glutamate catabolism gltL lo Glutamine ABC transporter ATP-binding protein, component of Glutamine transporter, GlnQP. Takes up glutamine, asparagine and glutamate which compete for each other for binding both substrate and the transmembrane protein constituent of the system (Fulyani et al. 2015). Tandem substrate binding domains (SBDs) differ in substrate specificity and affinity, allowing cells to efficiently accumulate different amino acids via a single ABC transporter. Analysis revealed the roles of individual residues in determining the substrate affinity (characterized) 39% 95% 150.2 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-cellobiose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 39% 54% 149.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-glucose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 39% 54% 149.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
lactose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 39% 54% 149.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-maltose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 39% 54% 149.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
sucrose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 39% 54% 149.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
trehalose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 39% 54% 149.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-xylose catabolism gtsD lo ABC transporter for D-Glucose-6-Phosphate, ATPase component (characterized) 39% 54% 149.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
L-arabinose catabolism xacK lo Xylose/arabinose import ATP-binding protein XacK; EC 7.5.2.13 (characterized, see rationale) 36% 63% 146 ABC transporter for L-Histidine, ATPase component 49% 246.5
L-fucose catabolism SM_b21106 lo ABC transporter for L-Fucose, ATPase component (characterized) 38% 61% 145.6 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-maltose catabolism malK_Aa lo ABC-type maltose transporter (EC 7.5.2.1) (characterized) 39% 52% 145.2 ABC transporter for L-Histidine, ATPase component 49% 246.5
trehalose catabolism treV lo TreV, component of Trehalose porter (characterized) 36% 66% 145.2 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-galactose catabolism PfGW456L13_1897 lo ABC transporter for D-Galactose and D-Glucose, ATPase component (characterized) 38% 54% 144.8 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-glucosamine (chitosamine) catabolism SM_b21216 lo ABC transporter for D-Glucosamine, ATPase component (characterized) 35% 72% 144.4 ABC transporter for L-Histidine, ATPase component 49% 246.5
L-proline catabolism opuBA lo BusAA, component of Uptake system for glycine-betaine (high affinity) and proline (low affinity) (OpuAA-OpuABC) or BusAA-ABC of Lactococcus lactis). BusAA, the ATPase subunit, has a C-terminal tandem cystathionine β-synthase (CBS) domain which is the cytoplasmic K+ sensor for osmotic stress (osmotic strength)while the BusABC subunit has the membrane and receptor domains fused to each other (Biemans-Oldehinkel et al., 2006; Mahmood et al., 2006; Gul et al. 2012). An N-terminal amphipathic α-helix of OpuA is necessary for high activity but is not critical for biogenesis or the ionic regulation of transport (characterized) 35% 60% 142.9 ABC transporter for L-Histidine, ATPase component 49% 246.5
L-lysine catabolism hisP lo Amino-acid ABC transporter, ATP-binding protein (characterized, see rationale) 35% 95% 141.7 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-cellobiose catabolism msiK lo MsiK protein, component of The cellobiose/cellotriose (and possibly higher cellooligosaccharides), CebEFGMsiK [MsiK functions to energize several ABC transporters including those for maltose/maltotriose and trehalose] (characterized) 36% 62% 139 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-cellobiose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 41% 55% 137.5 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-glucose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 41% 55% 137.5 ABC transporter for L-Histidine, ATPase component 49% 246.5
lactose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 41% 55% 137.5 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-maltose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 41% 55% 137.5 ABC transporter for L-Histidine, ATPase component 49% 246.5
sucrose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 41% 55% 137.5 ABC transporter for L-Histidine, ATPase component 49% 246.5
trehalose catabolism aglK' lo Maltose/maltodextrin import ATP-binding protein; EC 3.6.3.19 (characterized, see rationale) 41% 55% 137.5 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-cellobiose catabolism SMc04256 lo ABC transporter for D-Cellobiose and D-Salicin, ATPase component (characterized) 38% 57% 135.6 ABC transporter for L-Histidine, ATPase component 49% 246.5
L-arginine catabolism artP lo BgtA aka SLR1735, component of Arginine/lysine/histidine/glutamine porter (characterized) 36% 92% 134.8 ABC transporter for L-Histidine, ATPase component 49% 246.5
L-histidine catabolism bgtA lo BgtA aka SLR1735, component of Arginine/lysine/histidine/glutamine porter (characterized) 36% 92% 134.8 ABC transporter for L-Histidine, ATPase component 49% 246.5
L-asparagine catabolism aatP lo ABC transporter for L-aspartate, L-asparagine, L-glutamate, and L-glutamine, ATPase component (characterized) 39% 84% 134 ABC transporter for L-Histidine, ATPase component 49% 246.5
L-aspartate catabolism aatP lo ABC transporter for L-aspartate, L-asparagine, L-glutamate, and L-glutamine, ATPase component (characterized) 39% 84% 134 ABC transporter for L-Histidine, ATPase component 49% 246.5
D-mannose catabolism TM1750 lo TM1750, component of Probable mannose/mannoside porter. Induced by beta-mannan (Conners et al., 2005). Regulated by mannose-responsive regulator manR (characterized) 36% 70% 124 ABC transporter for L-Histidine, ATPase component 49% 246.5
myo-inositol catabolism PGA1_c07320 lo Inositol transport system ATP-binding protein (characterized) 31% 84% 85.5 ABC transporter for L-Histidine, ATPase component 49% 246.5

Sequence Analysis Tools

View WP_028485930.1 at NCBI

Find papers: PaperBLAST

Find functional residues: SitesBLAST

Search for conserved domains

Find the best match in UniProt

Compare to protein structures

Predict transmenbrane helices: Phobius

Predict protein localization: PSORTb

Find homologs in fast.genomics

Fitness BLAST: loading...

Sequence

MEQKTLNNSEAHPLDGFYTPEIQERFERIEKRPLAIEVQDLQKSFAHKGQVNQVLGGINF
DEYQREFMCVVGPSGCGKSTLARTIAGLESADSGVMVVAGSEVKGPGPDRGMVFQRYTLF
PWMTVKRNVMFGLTQNGMEKPDAEKEAAQWIDLVGLSKYEESYPHQLSGGMQQRVAIARA
LATQPKVLLMDEPFSALDPQNRAKMQQYLLEIWQNIDITILFITHDLDEAVYLSDRILVL
DAHPGRVREVLKVPLPRPRPLDIMLSEPFLATKHYLETLVHPPITDLDIEEKLSMVQMVP
VDSAVPDIF

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory