GapMind for catabolism of small carbon sources

 

Alignments for a candidate for paaJ1 in Azoarcus sp. BH72

Align β-ketoadipyl-CoA thiolase (EC 2.3.1.174; EC 2.3.1.223) (characterized)
to candidate WP_041642232.1 AZO_RS02365 acetyl-CoA C-acyltransferase

Query= metacyc::MONOMER-15952
         (401 letters)



>NCBI__GCF_000061505.1:WP_041642232.1
          Length = 398

 Score =  329 bits (844), Expect = 8e-95
 Identities = 201/414 (48%), Positives = 248/414 (59%), Gaps = 33/414 (7%)

Query: 1   MNEALIIDAVRTPIGRYAGALASVRADDLGAIPLKALIARHPQLDWSAVDDVIYGCANQA 60
           + +A I+ AVRTP+ +  GA   VR DD+ A  L+A++A+ P LD   + DVI GCA   
Sbjct: 5   IQDAYIVAAVRTPVAKRNGAFRHVRPDDMLAHVLRAVVAQVPALDAGEIGDVITGCAMPE 64

Query: 61  GEDNRNVARMAALLAGLPVSVPGTTLNRLCGSGLDAVGSAARALRCGEAGLMLAGGVESM 120
            E   NVAR+  LLAGLP  VPG TLNR C S L AV  AA  +R GEA +M+A G ESM
Sbjct: 65  AEQGMNVARIGLLLAGLPERVPGVTLNRFCASSLQAVADAANRIRLGEADVMIAAGTESM 124

Query: 121 SRAPFVMGKSEQAFGRSAEIFDTTIGWRFVNKLMQQGFGIDSMPETAENVAAQFNISRAD 180
           S  P +MG        + EIF      R  N  +  G G+     TAE VA ++ +SRAD
Sbjct: 125 SAMPQIMGNKVSL---NPEIFA-----RQENIDIAYGMGL-----TAEKVAEEWKVSRAD 171

Query: 181 QDAFALRSQHKAAAAIANGRLAKEIV-------------AVEIAQRKGPAKIVEHDEHPR 227
           QDAFAL+S  +A+AAIA+G    EI               V IA+R     IV+ DE PR
Sbjct: 172 QDAFALQSHQRASAAIADGSFGDEIAPYTVRSHLPGEGGTVRIAER-----IVDTDEGPR 226

Query: 228 GDTTLEQLAKLGTPFRQGGSVTAGNASGVNDGACALLLASSEAAQRHGLKARARVVGMAT 287
            D TLE LA+L   F   GSVTAGN+S ++DGA A+LL S  A QR+G+   AR    A 
Sbjct: 227 ADATLEALARLKPVFAARGSVTAGNSSQMSDGAGAVLLMSETALQRYGVTPLARFRSYAV 286

Query: 288 AGVEPRIMGIGPVPATRKVLELTGLALADMDVIELNEAFAAQGLAVLRELGLADDDERVN 347
           AGV PR+MGIGPV A  + L L GL L  +D IELNEAFAAQ LAV+R LGL  D  RVN
Sbjct: 287 AGVPPRVMGIGPVEAIPRALRLAGLGLDALDRIELNEAFAAQALAVIRTLGL--DPARVN 344

Query: 348 PNGGAIALGHPLGMSGARLVTTALHELEERQGRYALCTMCIGVGQGIALIIERI 401
           P GGAIALGHPLG +GA    T +  + +   R+ + TMC+G G G A I ER+
Sbjct: 345 PQGGAIALGHPLGATGAIRTATLMRAMRQGGVRHGMITMCVGTGMGAAAIFERV 398


Lambda     K      H
   0.319    0.134    0.384 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 461
Number of extensions: 25
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 401
Length of database: 398
Length adjustment: 31
Effective length of query: 370
Effective length of database: 367
Effective search space:   135790
Effective search space used:   135790
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory