GapMind for catabolism of small carbon sources

 

Alignments for a candidate for araVsh in Archaeoglobus veneficus SNP6

Align ABC transporter related (characterized, see rationale)
to candidate WP_048086136.1 ARCVE_RS02230 ABC transporter ATP-binding protein

Query= uniprot:A0KWY5
         (499 letters)



>NCBI__GCF_000194625.1:WP_048086136.1
          Length = 506

 Score =  262 bits (670), Expect = 2e-74
 Identities = 158/468 (33%), Positives = 260/468 (55%), Gaps = 3/468 (0%)

Query: 7   LKQISKHYPGVKALEDVSLRLFAGEVHALLGENGAGKSTLVKVMTGAQSKDMGDILFLGE 66
           ++ I K +PGV A + V+L ++ GE+H LLGENGAGK+TL+ V+ G    D G+I+F G+
Sbjct: 1   MRGIVKRFPGVVANDGVNLTVYRGEIHGLLGENGAGKTTLMNVLYGLYQPDEGEIIFEGK 60

Query: 67  PQHFNTPMDAQKAGISTVYQEVNLVPNLTVAQNLFLGYEPRRLGLIHFKKMYADARAVLT 126
              F +P DA +AGI  V+Q   LV  + V QN+ LGY   +  LI    +      +  
Sbjct: 61  KVRFKSPKDAIEAGIGMVHQHFMLVRRMNVLQNIVLGYRTPKDPLIDEGWVKEKINELSR 120

Query: 127 QFKLDIDVSAPLSDYSIAVQQLIAIARGVAMSAKVLVLDEPTASLDAKEVQVLFGILNQL 186
            + + +D    +++ S+  +Q + I + +  + K+L+LDEPTA L  +EV+ LF  L  +
Sbjct: 121 TYGIGVDADEVVANLSVGEEQRVEILKALFRNVKLLILDEPTAVLTPQEVKNLFSALKAM 180

Query: 187 KAKGVAIVFITHFLDQVYQISDRITVLRNGQFIGEYLTAELPQPKLIEAMLGRS-LQEQL 245
             KG+ ++FITH L +   ++DRITVLR G+ +G   T++  + +L   M+GR  + E  
Sbjct: 181 TDKGLTVIFITHKLKEALSVTDRITVLRRGKNVGTIETSKTDERELARMMVGREVVMEIR 240

Query: 246 VDKQEKERTVTRAEAVLLSLEDVSVKGSIQSMNLTVPKGQAVGLAGLLGSGRSEVCNAVF 305
             K E    V + E   L +ED     +++ ++ ++ KG+ +G+AG+ G+G+ E+  A+ 
Sbjct: 241 KPKVELGEEVLKVED--LWVEDDRGLMALKGISFSIRKGEILGIAGVSGNGQKELEEAIA 298

Query: 306 GLDLVDSGSIHLAGQKLNLSQPVDAISAGIALCPEDRKIDGIIGPLSIRENIILALQARI 365
           GL     G I L G+ +         ++GIA  PEDR   G+   LS+ EN++L      
Sbjct: 299 GLRKPRKGKIILNGRDITNLSVEGYTASGIACIPEDRIGVGLAPSLSVAENLMLRDFRNF 358

Query: 366 GWWRYLSNTRQQEIAQFFIDKLQIATPDADKPIEQLSGGNQQKVILARWLAIEPILLVLD 425
                L     +E A+  +++  I TP  D P   LSGGN Q++ILAR L+  P LL+  
Sbjct: 359 RRGFTLDFKAMEERAKKLVEEFAIKTPSLDVPASTLSGGNIQRLILARELSRNPKLLIAS 418

Query: 426 EPTRGIDIGAHAEIVKLIRTLCDEGMSLLVASSELDELVAFSNKVVVL 473
           +P+RG+DI     + + +      G ++L+ S +LDE++  S+ + V+
Sbjct: 419 QPSRGLDIAGIEYVRQRLIDAAKSGSAILLISEDLDEILQLSDTIAVI 466



 Score = 80.9 bits (198), Expect = 1e-19
 Identities = 54/204 (26%), Positives = 103/204 (50%), Gaps = 18/204 (8%)

Query: 277 MNLTVPKGQAVGLAGLLGSGRSEVCNAVFGLDLVDSGSIHLAGQKLNLSQPVDAISAGIA 336
           +NLTV +G+  GL G  G+G++ + N ++GL   D G I   G+K+    P DAI AGI 
Sbjct: 17  VNLTVYRGEIHGLLGENGAGKTTLMNVLYGLYQPDEGEIIFEGKKVRFKSPKDAIEAGIG 76

Query: 337 LCPEDRKIDGIIGPLSIRENIILALQARI------GWWRYLSNTRQQEIAQFFIDKLQIA 390
           +  +   +   +  +++ +NI+L  +         GW +   N          + +    
Sbjct: 77  MVHQHFML---VRRMNVLQNIVLGYRTPKDPLIDEGWVKEKINE---------LSRTYGI 124

Query: 391 TPDADKPIEQLSGGNQQKVILARWLAIEPILLVLDEPTRGIDIGAHAEIVKLIRTLCDEG 450
             DAD+ +  LS G +Q+V + + L     LL+LDEPT  +       +   ++ + D+G
Sbjct: 125 GVDADEVVANLSVGEEQRVEILKALFRNVKLLILDEPTAVLTPQEVKNLFSALKAMTDKG 184

Query: 451 MSLLVASSELDELVAFSNKVVVLR 474
           ++++  + +L E ++ ++++ VLR
Sbjct: 185 LTVIFITHKLKEALSVTDRITVLR 208



 Score = 77.0 bits (188), Expect = 1e-18
 Identities = 57/211 (27%), Positives = 105/211 (49%), Gaps = 6/211 (2%)

Query: 16  GVKALEDVSLRLFAGEVHALLGENGAGKSTLVKVMTGAQSKDMGDILFLGEPQHFNTPMD 75
           G+ AL+ +S  +  GE+  + G +G G+  L + + G +    G I+  G      +   
Sbjct: 263 GLMALKGISFSIRKGEILGIAGVSGNGQKELEEAIAGLRKPRKGKIILNGRDITNLSVEG 322

Query: 76  AQKAGISTVYQE---VNLVPNLTVAQNLFL-GYEPRRLGL-IHFKKMYADARAVLTQFKL 130
              +GI+ + ++   V L P+L+VA+NL L  +   R G  + FK M   A+ ++ +F +
Sbjct: 323 YTASGIACIPEDRIGVGLAPSLSVAENLMLRDFRNFRRGFTLDFKAMEERAKKLVEEFAI 382

Query: 131 DI-DVSAPLSDYSIAVQQLIAIARGVAMSAKVLVLDEPTASLDAKEVQVLFGILNQLKAK 189
               +  P S  S    Q + +AR ++ + K+L+  +P+  LD   ++ +   L      
Sbjct: 383 KTPSLDVPASTLSGGNIQRLILARELSRNPKLLIASQPSRGLDIAGIEYVRQRLIDAAKS 442

Query: 190 GVAIVFITHFLDQVYQISDRITVLRNGQFIG 220
           G AI+ I+  LD++ Q+SD I V+  G+  G
Sbjct: 443 GSAILLISEDLDEILQLSDTIAVIYEGELKG 473


Lambda     K      H
   0.319    0.136    0.377 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 609
Number of extensions: 37
Number of successful extensions: 8
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 3
Number of HSP's successfully gapped: 3
Length of query: 499
Length of database: 506
Length adjustment: 34
Effective length of query: 465
Effective length of database: 472
Effective search space:   219480
Effective search space used:   219480
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory