GapMind for catabolism of small carbon sources

 

Alignments for a candidate for fadA in Herbaspirillum autotrophicum IAM 14942

Align 3-ketoacyl-CoA thiolase (EC 2.3.1.16) (characterized)
to candidate WP_050464727.1 AKL27_RS20505 acetyl-CoA C-acyltransferase

Query= reanno::acidovorax_3H11:Ac3H11_2994
         (397 letters)



>NCBI__GCF_001189915.1:WP_050464727.1
          Length = 398

 Score =  569 bits (1466), Expect = e-167
 Identities = 287/398 (72%), Positives = 324/398 (81%), Gaps = 5/398 (1%)

Query: 5   IQDPIVIVGAARTPMGSLQGDFSSLAAHDLGGAAIKAAIERAGVSPDAVGEVLFGNCLMA 64
           + DPIVIVGAARTPMG+ QG+ SSL A DLG AAIKAA+ERAGV+P+ V +VLFGNCLMA
Sbjct: 1   MNDPIVIVGAARTPMGAFQGELSSLTASDLGAAAIKAALERAGVAPEQVQDVLFGNCLMA 60

Query: 65  GQGQAPARQAAFKGGLPKGAGAVTLSKMCGSGMKAAMMAHDMLLAGSHDVMVAGGMESMT 124
           GQGQAPARQAA K G+P  AGAVTLSKMCGS M+A M   D +LAG++DV+VAGGMESMT
Sbjct: 61  GQGQAPARQAAIKAGIPVSAGAVTLSKMCGSAMQATMFGFDSILAGTNDVVVAGGMESMT 120

Query: 125 NAPYLLQKGRGGYRLGHDRIFDHMMLDGLEDAYE-----AGRSMGTFGEDCAAKYSFTRE 179
           NAPYL+ K RGGYR+GH  I+DHMMLDGLEDAY       GR+MGTFGEDCAAKY FTRE
Sbjct: 121 NAPYLIPKARGGYRIGHGMIYDHMMLDGLEDAYSRDEKGGGRAMGTFGEDCAAKYGFTRE 180

Query: 180 QQDAFATASVQRAKAATESGAFAAEIVPVTVKTRAGETVVSVDEGPGKVKLEKIATLKPA 239
            QDAFA ASV+RA+ A   G+FA EI PVTV  R G+ V+  DEGP K K EKI +LKPA
Sbjct: 181 DQDAFAIASVKRAQQAAADGSFAWEIAPVTVAARGGDIVIDSDEGPRKAKPEKIPSLKPA 240

Query: 240 FKKDGTITAASSSSINDGAAALVMMRESTAKKLGAKPLARIVSHATHAQEPEWFATAPLG 299
           FKKDGTITAASSSSINDGAAALV+MRESTAKKLG KP+ARIV HA H+QEP WFATAP+ 
Sbjct: 241 FKKDGTITAASSSSINDGAAALVLMRESTAKKLGCKPIARIVGHARHSQEPNWFATAPID 300

Query: 300 ATQKALAKAGWQVGDVQLWEINEAFAVVPMALMKELDLPHDKVNVNGGACALGHPIGASG 359
           A      K GW   DV L+EINEAFA VPMA MKEL + HDKVN++GGACALGHPIGASG
Sbjct: 301 AINNLYKKIGWTTADVDLFEINEAFATVPMAAMKELGISHDKVNIHGGACALGHPIGASG 360

Query: 360 ARIMVTLIHALKARGLTKGLATLCIGGGEATAVALELV 397
           ARI+VTLI ALK  G  +G+A+LCIGGGE TA+A+ELV
Sbjct: 361 ARIIVTLIGALKKSGGKRGVASLCIGGGEGTALAIELV 398


Lambda     K      H
   0.317    0.131    0.376 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 593
Number of extensions: 11
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 397
Length of database: 398
Length adjustment: 31
Effective length of query: 366
Effective length of database: 367
Effective search space:   134322
Effective search space used:   134322
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory