GapMind for catabolism of small carbon sources

 

Alignments for a candidate for ARO8 in Hydrogenophaga taeniospiralis NBRC 102512

Align Aromatic-amino-acid aminotransferase (EC 2.6.1.57) (characterized)
to candidate WP_068168339.1 HTA01S_RS06765 aspartate/tyrosine/aromatic aminotransferase

Query= reanno::Cup4G11:RR42_RS33490
         (400 letters)



>NCBI__GCF_001592305.1:WP_068168339.1
          Length = 402

 Score =  416 bits (1069), Expect = e-121
 Identities = 212/400 (53%), Positives = 266/400 (66%), Gaps = 4/400 (1%)

Query: 1   MFEHIDAYPGDPILSLNESFQLDPRTDKVNLSIGIYFDDEGRLPVMQAVREAEAALMADM 60
           +F  ++  P DPIL LNE F  D   +KVNL +G+YFDD G+LP++Q V+ AE A+M   
Sbjct: 3   LFTAVEMAPRDPILGLNEQFAADTNPNKVNLGVGVYFDDNGKLPLLQCVQAAEKAMMDKP 62

Query: 61  GPRPYLPMAGFAAYRDAVQALVFGQPCQARAEGRIATVQTLGGSGALRVGADFLKRYFPD 120
             R YLP+ G AAY  AV+ LVFG        GR+ATVQ +GG+G L++GADFLK+  PD
Sbjct: 63  TARGYLPIDGIAAYDAAVKGLVFGADSDVVKSGRVATVQAIGGTGGLKIGADFLKKISPD 122

Query: 121 AQVWISDPSWENHRVIFERTGFTVNTYPYYDDAT----GGLKFDAMLDALRLIPKRSIVL 176
           A+V ISDPSWENHR +F   GFTV TYPY+D +     GG+ FD ML AL      +IVL
Sbjct: 123 AKVLISDPSWENHRALFTNAGFTVETYPYFDQSANGGLGGINFDGMLAALNAAAPGTIVL 182

Query: 177 LHACCHNPTGVDLNHDQWRQLITLLKQHELLPFVDMAYQGFGAGLDDDAFAVRELVAQGV 236
           LHACCHNPTG D+   QW Q+I +++   L  F+DMAYQGFG G+ +D   + + VA G+
Sbjct: 183 LHACCHNPTGYDITPAQWDQVIAVVQARNLTAFLDMAYQGFGYGIAEDGAVIGKFVAAGL 242

Query: 237 PCLVANSFSKNFSLYGERCGGLSVVCDSAEETGRVLGQLTGAVRANYSNPPTHGARVVAR 296
              V+ SFSK+FSLYGER G LSVV  S EET RVL QL  A+R NYSNPPTHG  +VA 
Sbjct: 243 NIFVSTSFSKSFSLYGERVGALSVVGSSKEETDRVLSQLKIAIRTNYSNPPTHGGAIVAA 302

Query: 297 VLTTPALRTIWERELAGKCERIAKMRAAIHKGLAAHVSGEALSRYLTQRGMFTYTGLTAD 356
           VL  P LR +WE+EL     RI  MR  +  GL A    + +S   TQ GMF+Y+GL+ D
Sbjct: 303 VLNNPELRALWEQELGEMRVRIKAMRQKLVDGLKAAGVAKDMSFITTQIGMFSYSGLSKD 362

Query: 357 QVDRLRTEHGVYLLRSGRMCVAGLNERNVTQVAQAIASVL 396
           Q+ RLR+E GVY   +GRMCVA LN +N+  V QAIA V+
Sbjct: 363 QMVRLRSEFGVYGTDTGRMCVAALNSKNIDYVCQAIAKVI 402


Lambda     K      H
   0.323    0.137    0.417 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 443
Number of extensions: 14
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 400
Length of database: 402
Length adjustment: 31
Effective length of query: 369
Effective length of database: 371
Effective search space:   136899
Effective search space used:   136899
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.9 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory