GapMind for catabolism of small carbon sources

 

Alignments for a candidate for proV in Malonomonas rubra DSM 5091

Align glycine betaine/l-proline transport atp-binding protein prov (characterized)
to candidate WP_072908814.1 BUB13_RS11050 proline/glycine betaine ABC transporter ATP-binding protein ProV

Query= CharProtDB::CH_001555
         (400 letters)



>NCBI__GCF_900142125.1:WP_072908814.1
          Length = 415

 Score =  452 bits (1164), Expect = e-132
 Identities = 238/395 (60%), Positives = 296/395 (74%), Gaps = 4/395 (1%)

Query: 3   IKLEIKNLYKIFGEHPQRAFKYIEQGLSKEQILEKTGLSLGVKDASLAIEEGEIFVIMGL 62
           +K+E+KNLYKIFG  P++A   ++QGL KE I EKT  ++GV+DAS  I +GEIFVIMGL
Sbjct: 5   VKIEVKNLYKIFGPQPKKAMALLKQGLDKEAIFEKTETTVGVQDASFEIFKGEIFVIMGL 64

Query: 63  SGSGKSTMVRLLNRLIEPTRGQVLIDGVDIAKISDAELREVRRKKIAMVFQSFALMPHMT 122
           SGSGKSTMVR+LNRLIEPT GQVLIDG DI  ++D +L +VRR K++MVFQSFALMPHMT
Sbjct: 65  SGSGKSTMVRMLNRLIEPTSGQVLIDGEDIVAMNDDQLVKVRRAKLSMVFQSFALMPHMT 124

Query: 123 VLDNTAFGMELAGINAEERREKALDALRQVGLENYAHSYPDELSGGMRQRVGLARALAIN 182
           VL N AFG+E+ G++ + R ++AL AL QVGLE +A S PDELSGGM+QRVGLAR LA++
Sbjct: 125 VLQNAAFGLEMDGVDKQTREQRALQALEQVGLEAWAESMPDELSGGMQQRVGLARGLAVD 184

Query: 183 PDILLMDEAFSALDPLIRTEMQDELVKLQAKHQRTIVFISHDLDEAMRIGDRIAIMQNGE 242
           PDILLMDEAFSALDPLIRTEMQDEL+KLQAK +RTIVFISHDLDEAMRIGDRIAIM+ G 
Sbjct: 185 PDILLMDEAFSALDPLIRTEMQDELLKLQAKAKRTIVFISHDLDEAMRIGDRIAIMEGGR 244

Query: 243 VVQVGTPDEILNNPANDYVRTFFRGVDISQVFSAKDIARRTPNGLIRKTPGFGPRSALKL 302
           VVQVGTP+EIL NPA+DYVR FFRGVD + + +A DIA +T    I  T G  PR+ L+ 
Sbjct: 245 VVQVGTPEEILQNPADDYVRAFFRGVDPTNILTAGDIATQT-QVTIPITDGKNPRAGLQR 303

Query: 303 LQDEDREYGYVIERGNKFVGAVSIDSLKTALTQQQG---LDAALIDAPLAVDAQTPLSEL 359
           L   DR+Y YV++    F G VS DSL+  L        +  A ++  +A      L ++
Sbjct: 304 LVKNDRDYAYVLDSEKTFKGVVSTDSLRDMLENDNVPHLIPNAYLEEVVAAHKDDSLQDI 363

Query: 360 LSHVGQAPCAVPVVDEDQQYVGIISKGMLLRALDR 394
           L  V   P  +P++D+D +Y+G ISK + L+ L R
Sbjct: 364 LPKVAAHPWPLPILDDDGRYLGAISKNLFLKTLHR 398


Lambda     K      H
   0.319    0.137    0.378 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 503
Number of extensions: 20
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 400
Length of database: 415
Length adjustment: 31
Effective length of query: 369
Effective length of database: 384
Effective search space:   141696
Effective search space used:   141696
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory