GapMind for catabolism of small carbon sources

 

Alignments for a candidate for fadA in Bacillus alkalinitrilicus DSM 22532

Align 3-ketoacyl-CoA thiolase; Acetyl-CoA acyltransferase; Beta-ketothiolase; EC 2.3.1.16 (characterized)
to candidate WP_075387974.1 BK574_RS20875 acetyl-CoA C-acyltransferase

Query= SwissProt::O32177
         (391 letters)



>NCBI__GCF_002019605.1:WP_075387974.1
          Length = 393

 Score =  576 bits (1484), Expect = e-169
 Identities = 289/391 (73%), Positives = 338/391 (86%), Gaps = 1/391 (0%)

Query: 1   MKEAVIVSGARTPVGKAKKGSLATVRPDDLGAICVKETLKRAGGYEGN-IDDLIIGCATP 59
           M+EAVIV+GARTPVGKAK+G+LA VRPDDLGA+ +KETLKRAG ++ N IDD+IIGC+ P
Sbjct: 1   MREAVIVAGARTPVGKAKRGTLANVRPDDLGALTIKETLKRAGDFDPNQIDDVIIGCSMP 60

Query: 60  EAEQGLNMARNIGALAGLPYTVPAITVNRYCSSGLQSIAYAAEKIMLGAYDTAIAGGAES 119
           EAEQG+NMARNI ALAGLP TVPAIT+NRYCSSGLQSIAYA+E+IMLG   + IAGGAES
Sbjct: 61  EAEQGMNMARNISALAGLPNTVPAITINRYCSSGLQSIAYASERIMLGHAKSIIAGGAES 120

Query: 120 MSQVPMMGHVTRPNLALAEKAPEYYMSMGHTAEQVAKKYGVSREDQDAFAVRSHQNAAKA 179
           MS +PM GHV  PN  L E+ PEYYM MG+TAE+VA ++GVSREDQDAFAV SH+ AAKA
Sbjct: 121 MSLIPMGGHVIAPNPKLVEEMPEYYMGMGYTAEEVANRFGVSREDQDAFAVESHRRAAKA 180

Query: 180 LAEGKFKDEIVPVEVTVTEIGEDHKPMEKQFVFSQDEGVRPQTTADILSTLRPAFSVDGT 239
           +AEGKF+DEIVPV+VT+  +G D+K  EK   FS DEGVR +TT + L  LRPAF   G+
Sbjct: 181 IAEGKFEDEIVPVDVTLRSVGADNKLKEKHVTFSVDEGVRAETTVETLGKLRPAFHPKGS 240

Query: 240 VTAGNSSQTSDGAAAVMLMDREKADALGLAPLVKFRSFAVGGVPPEVMGIGPVEAIPRAL 299
           VTAGN+SQ SDGAA+V++MDRE+A A GL PL+KFRSFAV GV PE+MGIGPVEAIP+AL
Sbjct: 241 VTAGNASQMSDGAASVLVMDREEAKANGLTPLLKFRSFAVAGVAPEIMGIGPVEAIPKAL 300

Query: 300 KLAGLQLQDIGLFELNEAFASQAIQVIRELGIDEEKVNVNGGAIALGHPLGCTGTKLTLS 359
           +LAGL L DIGLFELNEAFASQ++QV+R LG+D +KVNVNGGAIALGHPLGC+G KLTL+
Sbjct: 301 ELAGLSLADIGLFELNEAFASQSLQVVRHLGLDLDKVNVNGGAIALGHPLGCSGAKLTLT 360

Query: 360 LIHEMKRRNEQFGVVTMCIGGGMGAAGVFEL 390
           L++EMKRR EQFGVVTMCIGGGMGAAGVFEL
Sbjct: 361 LMNEMKRRGEQFGVVTMCIGGGMGAAGVFEL 391


Lambda     K      H
   0.316    0.133    0.377 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 538
Number of extensions: 12
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 391
Length of database: 393
Length adjustment: 31
Effective length of query: 360
Effective length of database: 362
Effective search space:   130320
Effective search space used:   130320
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory