GapMind for catabolism of small carbon sources

 

Alignments for a candidate for acn in Pseudomonas benzenivorans DSM 8628

Align Aconitate hydratase A; ACN; Aconitase; (2R,3S)-2-methylisocitrate dehydratase; (2S,3R)-3-hydroxybutane-1,2,3-tricarboxylate dehydratase; 2-methyl-cis-aconitate hydratase; Iron-responsive protein-like; IRP-like; RNA-binding protein; EC 4.2.1.3; EC 4.2.1.99 (characterized)
to candidate WP_090438007.1 BLS63_RS00030 aconitate hydratase AcnA

Query= SwissProt::Q8ZP52
         (891 letters)



>NCBI__GCF_900100495.1:WP_090438007.1
          Length = 913

 Score = 1221 bits (3158), Expect = 0.0
 Identities = 607/900 (67%), Positives = 720/900 (80%), Gaps = 21/900 (2%)

Query: 12  TLQAKDKTYHYYSLPLAAKSLGDIARLPKSLKVLLENLLRWQDGESVTDEDIQALAGWLK 71
           +L+   +TY Y+SL  AAK+LG++ +LP SLKVLLENLLRW+DG +V   D++A+A WLK
Sbjct: 12  SLEVDGQTYEYFSLAEAAKTLGNLDKLPMSLKVLLENLLRWEDGTTVGGADLRAMADWLK 71

Query: 72  NAHADREIAWRPARVLMQDFTGVPAVVDLAAMREAVKRLGGDTSKVNPLSPVDLVIDHSV 131
           +  ++REI +RPARVLMQDFTGVPAVVDLAAMREA+ + GGD  K+NPLSPVDLVIDHSV
Sbjct: 72  SRGSEREIQYRPARVLMQDFTGVPAVVDLAAMREAMAKAGGDPQKINPLSPVDLVIDHSV 131

Query: 132 TVDHFGDDDAFEENVRLEMERNHERYMFLKWGKQAFSRFSVVPPGTGICHQVNLEYLGKA 191
            VD F    AF +NV +EM+RN ERY FL+WG+ AF+ F VVPPGTGICHQVNLEYLG+ 
Sbjct: 132 MVDKFASSAAFGDNVAIEMQRNGERYAFLRWGQHAFANFRVVPPGTGICHQVNLEYLGRT 191

Query: 192 VWSELQDGEWIAYPDSLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVSMLIPDVVG 251
           VW++ +DG+ +A+PD+LVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVSMLIP+V+G
Sbjct: 192 VWTQEEDGQTLAFPDTLVGTDSHTTMINGLGVLGWGVGGIEAEAAMLGQPVSMLIPEVIG 251

Query: 252 FKLTGKLREGITATDLVLTVTQMLRKHGVVGKFVEFYGDGLDSLPLADRATIANMSPEYG 311
           FKLTGKL+EGITATDLVLTVTQMLR  GVVGKFVEFYGDGL  LPLADRATIANM+PEYG
Sbjct: 252 FKLTGKLKEGITATDLVLTVTQMLRSKGVVGKFVEFYGDGLADLPLADRATIANMAPEYG 311

Query: 312 ATCGFFPIDAITLEYMRLSGRSDDLVELVETYAKAQGMWRNPGDEPVFTSTLELDMGDVE 371
           ATCGFFP+DAITL Y+RLSGR +  V+LVE Y KAQG+WR  G EP+F+ +LELD+G VE
Sbjct: 312 ATCGFFPVDAITLGYLRLSGRPEQSVKLVEAYCKAQGLWRETGFEPLFSDSLELDLGSVE 371

Query: 372 ASLAGPKRPQDRVALGDVPKAFAASAELELNTAQRDRQ-------------------PVD 412
           ASLAGPKRPQDRVAL  V +AF     L++     D                      VD
Sbjct: 372 ASLAGPKRPQDRVALSQVGQAFDEFMGLQVKPNATDEGRLLNEGGGGAAVGSAALVGEVD 431

Query: 413 YTMNGQPYQLPDGAVVIAAITSCTNTSNPSVLMAAGLLAKKAVTLGLKRQPWVKASLAPG 472
           Y   GQ ++L  GAVVIAAITSCTNTSNPSV+MAAGLLAKKAV  GL R+PWVK+SLAPG
Sbjct: 432 YEHEGQTHRLKHGAVVIAAITSCTNTSNPSVMMAAGLLAKKAVEKGLHRKPWVKSSLAPG 491

Query: 473 SKVVSDYLAQAKLTPYLDELGFNLVGYGCTTCIGNSGPLPEPIETAIKKGDLTVGAVLSG 532
           SKVV+DY   A LT YLDELGF+LVGYGCTTCIGNSGPL EPIE AI++ DLTV +VLSG
Sbjct: 492 SKVVTDYFKAAGLTRYLDELGFDLVGYGCTTCIGNSGPLLEPIEQAIQQHDLTVASVLSG 551

Query: 533 NRNFEGRIHPLVKTNWLASPPLVVAYALAGNMNINLATDPLGYDRKGDPVYLKDIWPSAQ 592
           NRNFEGR+HPLVKTNWLASPPLVVAYALAG++ +N+A +PLG+ + G  VYLKDIWPS +
Sbjct: 552 NRNFEGRVHPLVKTNWLASPPLVVAYALAGSVRMNIAKEPLGHAKDGQAVYLKDIWPSQR 611

Query: 593 EIARAVELVSSDMFRKEYAEVFEGTEEWKSIQVESSDTYGWQSDSTYIRLSPFFDEMQAQ 652
           EIA A++ V + MF KEYAEVF G ++W++IQV  + TY WQ+DSTYI+  PFF+++   
Sbjct: 612 EIAEAMQKVDTAMFHKEYAEVFAGDQQWQAIQVPQAATYAWQADSTYIQHPPFFEDISEA 671

Query: 653 PAPVKDIHGARILAMLGDSVTTDHISPAGSIKPDSPAGRYLQNHGVERKDFNSYGSRRGN 712
           P  + DIH ARILA+LGDSVTTDHISPAG+IK DSPAGRYL+  GVE +DFNSYGSRRGN
Sbjct: 672 PPHIGDIHQARILALLGDSVTTDHISPAGNIKADSPAGRYLREQGVEPRDFNSYGSRRGN 731

Query: 713 HEVMMRGTFANIRIRNEMLPGVEGGMTRHLPGTEAMSIYDAAMLYQQEKTPLAVIAGKEY 772
           HEVMMRGTFANIRIRNEML G EGG T H+P  E +SI++AAM YQ+  TPL V+AGKEY
Sbjct: 732 HEVMMRGTFANIRIRNEMLGGEEGGNTLHVPSGEKLSIFEAAMRYQEAGTPLLVVAGKEY 791

Query: 773 GSGSSRDWAAKGPRLLGIRVVIAESFERIHRSNLIGMGILPLEFPQGVTRKTLGLTGEEV 832
           G+GSSRDWAAKG  LLG++ VIAESFERIHRSNL+GMG+LPL+F  G  R+TL LTG+E 
Sbjct: 792 GTGSSRDWAAKGTNLLGVKAVIAESFERIHRSNLVGMGVLPLQFKAGQDRQTLRLTGQET 851

Query: 833 IDIADLQ--NLRPGATIPVTLTRSDGSKETVPCRCRIDTATELTYYQNDGILHYVIRNML 890
           + I  L    L P   + V + R DGS+++    CRIDT  E+ Y++  GILHYV+R ++
Sbjct: 852 LGIYGLDGVELHPHMNLTVEVARVDGSRDSFEVLCRIDTLNEVEYFKAGGILHYVLRQLI 911


Lambda     K      H
   0.317    0.135    0.401 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 2169
Number of extensions: 95
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 891
Length of database: 913
Length adjustment: 43
Effective length of query: 848
Effective length of database: 870
Effective search space:   737760
Effective search space used:   737760
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 56 (26.2 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory