GapMind for catabolism of small carbon sources

 

L-isoleucine catabolism in Saccharomonospora marina XMU15

Best path

natA, natB, natC, natD, natE, bkdA, bkdB, bkdC, lpd, acdH, ech, ivdG, fadA, pccA, pccB, epi, mcm-large, mcm-small

Rules

Overview: Isoleucine degradation in GapMind is based on MetaCyc pathway L-isoleucine degradation I (link). The other pathways are fermentative and do not lead to carbon incorporation (link, link).

45 steps (35 with candidates)

Or see definitions of steps

Step Description Best candidate 2nd candidate
natA L-isoleucine ABC transporter, ATPase component 1 (NatA) SACMADRAFT_RS19815 SACMADRAFT_RS27840
natB L-isoleucine ABC transporter, substrate-binding component NatB SACMADRAFT_RS19825
natC L-isoleucine ABC transporter, permease component 1 (NatC)
natD L-isoleucine ABC transporter, permease component 2 (NatD) SACMADRAFT_RS19805 SACMADRAFT_RS11890
natE L-isoleucine ABC transporter, ATPase component 2 (NatE) SACMADRAFT_RS19820 SACMADRAFT_RS27835
bkdA branched-chain alpha-ketoacid dehydrogenase, E1 component alpha subunit SACMADRAFT_RS27870 SACMADRAFT_RS12845
bkdB branched-chain alpha-ketoacid dehydrogenase, E1 component beta subunit SACMADRAFT_RS27875 SACMADRAFT_RS18015
bkdC branched-chain alpha-ketoacid dehydrogenase, E2 component SACMADRAFT_RS27880 SACMADRAFT_RS07080
lpd branched-chain alpha-ketoacid dehydrogenase, E3 component SACMADRAFT_RS07375 SACMADRAFT_RS07085
acdH (2S)-2-methylbutanoyl-CoA dehydrogenase SACMADRAFT_RS21150 SACMADRAFT_RS23115
ech 2-methyl-3-hydroxybutyryl-CoA hydro-lyase SACMADRAFT_RS19140 SACMADRAFT_RS21080
ivdG 3-hydroxy-2-methylbutyryl-CoA dehydrogenase SACMADRAFT_RS12380 SACMADRAFT_RS01270
fadA 2-methylacetoacetyl-CoA thiolase SACMADRAFT_RS10145 SACMADRAFT_RS09930
pccA propionyl-CoA carboxylase, alpha subunit SACMADRAFT_RS04285 SACMADRAFT_RS21155
pccB propionyl-CoA carboxylase, beta subunit SACMADRAFT_RS04305 SACMADRAFT_RS22485
epi methylmalonyl-CoA epimerase SACMADRAFT_RS19220
mcm-large methylmalonyl-CoA mutase, large (catalytic) subunit SACMADRAFT_RS04205 SACMADRAFT_RS20075
mcm-small methylmalonyl-CoA mutase, small (adenosylcobamide-binding) subunit SACMADRAFT_RS04205 SACMADRAFT_RS20075
Alternative steps:
acn (2R,3S)-2-methylcitrate dehydratase SACMADRAFT_RS13685
acnD 2-methylcitrate dehydratase (2-methyl-trans-aconitate forming) SACMADRAFT_RS13685
Bap2 L-isoleucine permease Bap2
bcaP L-isoleucine uptake transporter BcaP/CitA
brnQ L-isoleucine:cation symporter BrnQ/BraZ/BraB
dddA 3-hydroxypropionate dehydrogenase
hpcD 3-hydroxypropionyl-CoA dehydratase SACMADRAFT_RS19140 SACMADRAFT_RS10990
iolA malonate semialdehyde dehydrogenase (CoA-acylating) SACMADRAFT_RS24225 SACMADRAFT_RS17745
livF L-isoleucine ABC transporter, ATPase component 1 (LivF/BraG) SACMADRAFT_RS28595 SACMADRAFT_RS27835
livG L-isoleucine ABC transporter, ATPase component 2 (LivG/BraF) SACMADRAFT_RS27840 SACMADRAFT_RS24980
livH L-isoleucine ABC transporter, permease component 1 (LivH/BraD) SACMADRAFT_RS27850 SACMADRAFT_RS19805
livJ L-isoleucine ABC transporter, substrate-binding component (LivJ/LivK/BraC/BraC3)
livM L-isoleucine ABC transporter, permease component 2 (LivM/BraE) SACMADRAFT_RS27855 SACMADRAFT_RS12310
mcmA methylmalonyl-CoA mutase, fused catalytic and adenosylcobamide-binding components SACMADRAFT_RS04205 SACMADRAFT_RS10860
ofo branched-chain alpha-ketoacid:ferredoxin oxidoreductase, fused
ofoA branched-chain alpha-ketoacid:ferredoxin oxidoreductase, alpha subunit OfoA SACMADRAFT_RS02855
ofoB branched-chain alpha-ketoacid:ferredoxin oxidoreductase, beta subunit OfoB SACMADRAFT_RS02850
pccA1 propionyl-CoA carboxylase, biotin carboxyl carrier subunit SACMADRAFT_RS04285 SACMADRAFT_RS26315
pccA2 propionyl-CoA carboxylase, biotin carboxylase subunit SACMADRAFT_RS13015
pco propanyl-CoA oxidase SACMADRAFT_RS06025 SACMADRAFT_RS04405
prpB 2-methylisocitrate lyase SACMADRAFT_RS19010 SACMADRAFT_RS03145
prpC 2-methylcitrate synthase SACMADRAFT_RS23140 SACMADRAFT_RS23100
prpD 2-methylcitrate dehydratase
prpF methylaconitate isomerase SACMADRAFT_RS25120
vorA branched-chain alpha-ketoacid:ferredoxin oxidoreductase, alpha subunit VorA
vorB branched-chain alpha-ketoacid:ferredoxin oxidoreductase, beta subunit VorB SACMADRAFT_RS02855
vorC branched-chain alpha-ketoacid:ferredoxin oxidoreductase, gamma subunit VorC

Confidence: high confidence medium confidence low confidence
transporter – transporters and PTS systems are shaded because predicting their specificity is particularly challenging.

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory