GapMind for catabolism of small carbon sources

 

L-leucine catabolism in Saccharomonospora marina XMU15

Best path

natA, natB, natC, natD, natE, ilvE, bkdA, bkdB, bkdC, lpd, liuA, liuB, liuD, liuC, liuE, aacS, atoB

Rules

Overview: Leucine degradation in GapMind is based on MetaCyc pathway L-leucine degradation I, via branched alpha-keto acid dehydrogenase (link). Other pathways for are not included here because they are not linked to sequence (link) or do not result in carbon incorporation.

39 steps (27 with candidates)

Or see definitions of steps

Step Description Best candidate 2nd candidate
natA L-leucine ABC transporter, ATPase component 1 (NatA) SACMADRAFT_RS19815 SACMADRAFT_RS27840
natB L-leucine ABC transporter, substrate-binding component NatB SACMADRAFT_RS19825
natC L-leucine ABC transporter, permease component 1 (NatC)
natD L-leucine ABC transporter, permease component 2 (NatD) SACMADRAFT_RS19805 SACMADRAFT_RS11890
natE L-leucine ABC transporter, ATPase component 2 (NatE) SACMADRAFT_RS19820 SACMADRAFT_RS27835
ilvE L-leucine transaminase SACMADRAFT_RS07120 SACMADRAFT_RS28295
bkdA branched-chain alpha-ketoacid dehydrogenase, E1 component alpha subunit SACMADRAFT_RS27870 SACMADRAFT_RS12845
bkdB branched-chain alpha-ketoacid dehydrogenase, E1 component beta subunit SACMADRAFT_RS27875 SACMADRAFT_RS18015
bkdC branched-chain alpha-ketoacid dehydrogenase, E2 component SACMADRAFT_RS27880 SACMADRAFT_RS07080
lpd branched-chain alpha-ketoacid dehydrogenase, E3 component SACMADRAFT_RS07375 SACMADRAFT_RS07085
liuA isovaleryl-CoA dehydrogenase SACMADRAFT_RS21150 SACMADRAFT_RS27670
liuB 3-methylcrotonyl-CoA carboxylase, alpha (biotin-containing) subunit SACMADRAFT_RS21155 SACMADRAFT_RS26315
liuD 3-methylcrotonyl-CoA carboxylase, beta subunit SACMADRAFT_RS26320 SACMADRAFT_RS15845
liuC 3-methylglutaconyl-CoA hydratase SACMADRAFT_RS19140 SACMADRAFT_RS08335
liuE hydroxymethylglutaryl-CoA lyase SACMADRAFT_RS04320
aacS acetoacetyl-CoA synthetase SACMADRAFT_RS01985 SACMADRAFT_RS23315
atoB acetyl-CoA C-acetyltransferase SACMADRAFT_RS19295 SACMADRAFT_RS10145
Alternative steps:
AAP1 L-leucine permease AAP1
aapJ ABC transporter for amino acids (Asp/Asn/Glu/Pro/Leu), substrate-binding component AapJ
aapM ABC transporter for amino acids (Asp/Asn/Glu/Pro/Leu), permease component 2 (AapM) SACMADRAFT_RS27820 SACMADRAFT_RS15020
aapP ABC transporter for amino acids (Asp/Asn/Glu/Pro/Leu), ATPase component AapP SACMADRAFT_RS18450 SACMADRAFT_RS27815
aapQ ABC transporter for amino acids (Asp/Asn/Glu/Pro/Leu), permease component 1 (AapQ)
atoA acetoacetyl-CoA transferase, A subunit SACMADRAFT_RS19575
atoD acetoacetyl-CoA transferase, B subunit SACMADRAFT_RS19570
Bap2 L-leucine permease Bap2
bcaP L-leucine uptake transporter BcaP
brnQ L-leucine:Na+ symporter BrnQ/BraB
leuT L-leucine:Na+ symporter LeuT
livF L-leucine ABC transporter, ATPase component 1 (LivF/BraG) SACMADRAFT_RS28595 SACMADRAFT_RS27835
livG L-leucine ABC transporter, ATPase component 2 (LivG/BraF) SACMADRAFT_RS24980 SACMADRAFT_RS27840
livH L-leucine ABC transporter, permease component 1 (LivH/BraD) SACMADRAFT_RS27850 SACMADRAFT_RS19805
livJ L-leucine ABC transporter, substrate-binding component (LivJ/LivK/BraC/BraC3)
livM L-leucine ABC transporter, permease component 2 (LivM/BraE) SACMADRAFT_RS27855 SACMADRAFT_RS19810
ofo branched-chain alpha-ketoacid:ferredoxin oxidoreductase, fused
ofoA branched-chain alpha-ketoacid:ferredoxin oxidoreductase, alpha subunit OfoA SACMADRAFT_RS02855
ofoB branched-chain alpha-ketoacid:ferredoxin oxidoreductase, beta subunit OfoB SACMADRAFT_RS02850
vorA branched-chain alpha-ketoacid:ferredoxin oxidoreductase, alpha subunit VorA
vorB branched-chain alpha-ketoacid:ferredoxin oxidoreductase, beta subunit VorB SACMADRAFT_RS02855
vorC branched-chain alpha-ketoacid:ferredoxin oxidoreductase, gamma subunit VorC

Confidence: high confidence medium confidence low confidence
transporter – transporters and PTS systems are shaded because predicting their specificity is particularly challenging.

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory