GapMind for catabolism of small carbon sources

 

L-leucine catabolism in Microvirga lotononidis WSM3557

Best path

livF, livG, livJ, livH, livM, ilvE, bkdA, bkdB, bkdC, lpd, liuA, liuB, liuD, liuC, liuE, atoA, atoD, atoB

Rules

Overview: Leucine degradation in GapMind is based on MetaCyc pathway L-leucine degradation I, via branched alpha-keto acid dehydrogenase (link). Other pathways for are not included here because they are not linked to sequence (link) or do not result in carbon incorporation.

39 steps (28 with candidates)

Or see definitions of steps

Step Description Best candidate 2nd candidate
livF L-leucine ABC transporter, ATPase component 1 (LivF/BraG) MICLODRAFT_RS30925 MICLODRAFT_RS11955
livG L-leucine ABC transporter, ATPase component 2 (LivG/BraF) MICLODRAFT_RS30920 MICLODRAFT_RS27005
livJ L-leucine ABC transporter, substrate-binding component (LivJ/LivK/BraC/BraC3) MICLODRAFT_RS30935 MICLODRAFT_RS25195
livH L-leucine ABC transporter, permease component 1 (LivH/BraD) MICLODRAFT_RS30910 MICLODRAFT_RS27015
livM L-leucine ABC transporter, permease component 2 (LivM/BraE) MICLODRAFT_RS30915 MICLODRAFT_RS27010
ilvE L-leucine transaminase MICLODRAFT_RS31820 MICLODRAFT_RS18640
bkdA branched-chain alpha-ketoacid dehydrogenase, E1 component alpha subunit MICLODRAFT_RS26750 MICLODRAFT_RS10535
bkdB branched-chain alpha-ketoacid dehydrogenase, E1 component beta subunit MICLODRAFT_RS26745 MICLODRAFT_RS10540
bkdC branched-chain alpha-ketoacid dehydrogenase, E2 component MICLODRAFT_RS26740 MICLODRAFT_RS28650
lpd branched-chain alpha-ketoacid dehydrogenase, E3 component MICLODRAFT_RS26735 MICLODRAFT_RS10555
liuA isovaleryl-CoA dehydrogenase MICLODRAFT_RS25365 MICLODRAFT_RS09735
liuB 3-methylcrotonyl-CoA carboxylase, alpha (biotin-containing) subunit MICLODRAFT_RS26375 MICLODRAFT_RS25320
liuD 3-methylcrotonyl-CoA carboxylase, beta subunit MICLODRAFT_RS25395 MICLODRAFT_RS23515
liuC 3-methylglutaconyl-CoA hydratase MICLODRAFT_RS03885 MICLODRAFT_RS07440
liuE hydroxymethylglutaryl-CoA lyase
atoA acetoacetyl-CoA transferase, A subunit MICLODRAFT_RS23795 MICLODRAFT_RS09110
atoD acetoacetyl-CoA transferase, B subunit MICLODRAFT_RS23800 MICLODRAFT_RS09115
atoB acetyl-CoA C-acetyltransferase MICLODRAFT_RS27925 MICLODRAFT_RS10820
Alternative steps:
aacS acetoacetyl-CoA synthetase MICLODRAFT_RS32190 MICLODRAFT_RS22300
AAP1 L-leucine permease AAP1
aapJ ABC transporter for amino acids (Asp/Asn/Glu/Pro/Leu), substrate-binding component AapJ MICLODRAFT_RS26245 MICLODRAFT_RS19560
aapM ABC transporter for amino acids (Asp/Asn/Glu/Pro/Leu), permease component 2 (AapM) MICLODRAFT_RS19550 MICLODRAFT_RS26255
aapP ABC transporter for amino acids (Asp/Asn/Glu/Pro/Leu), ATPase component AapP MICLODRAFT_RS26260 MICLODRAFT_RS31925
aapQ ABC transporter for amino acids (Asp/Asn/Glu/Pro/Leu), permease component 1 (AapQ) MICLODRAFT_RS26250 MICLODRAFT_RS19555
Bap2 L-leucine permease Bap2
bcaP L-leucine uptake transporter BcaP
brnQ L-leucine:Na+ symporter BrnQ/BraB
leuT L-leucine:Na+ symporter LeuT
natA L-leucine ABC transporter, ATPase component 1 (NatA) MICLODRAFT_RS11960 MICLODRAFT_RS20165
natB L-leucine ABC transporter, substrate-binding component NatB MICLODRAFT_RS30935
natC L-leucine ABC transporter, permease component 1 (NatC) MICLODRAFT_RS30915
natD L-leucine ABC transporter, permease component 2 (NatD) MICLODRAFT_RS27015 MICLODRAFT_RS30910
natE L-leucine ABC transporter, ATPase component 2 (NatE) MICLODRAFT_RS27000 MICLODRAFT_RS30925
ofo branched-chain alpha-ketoacid:ferredoxin oxidoreductase, fused MICLODRAFT_RS18635 MICLODRAFT_RS27100
ofoA branched-chain alpha-ketoacid:ferredoxin oxidoreductase, alpha subunit OfoA
ofoB branched-chain alpha-ketoacid:ferredoxin oxidoreductase, beta subunit OfoB
vorA branched-chain alpha-ketoacid:ferredoxin oxidoreductase, alpha subunit VorA
vorB branched-chain alpha-ketoacid:ferredoxin oxidoreductase, beta subunit VorB
vorC branched-chain alpha-ketoacid:ferredoxin oxidoreductase, gamma subunit VorC

Confidence: high confidence medium confidence low confidence
transporter – transporters and PTS systems are shaded because predicting their specificity is particularly challenging.

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory