GapMind for catabolism of small carbon sources

 

L-arabinose catabolism in Endozoicomonas montiporae CL-33

Best path

araE, araA, araB, araD

Rules

Overview: L-arabinose utilization in GapMind is based on MetaCyc pathways L-arabinose degradation I, via xylulose 5-phosphate (link); III, oxidation to 2-oxoglutarate (link); and IV, via glycolaldehyde (link). Pathway II via xylitol and xylulose is not represented in GapMind because it is not reported in prokaryotes (link).

40 steps (21 with candidates)

Or see definitions of steps

Step Description Best candidate 2nd candidate
araE L-arabinose:H+ symporter
araA L-arabinose isomerase
araB ribulokinase EZMO1_RS03780
araD L-ribulose-5-phosphate epimerase EZMO1_RS25170
Alternative steps:
aldA (glycol)aldehyde dehydrogenase EZMO1_RS03095 EZMO1_RS18815
aldox-large (glycol)aldehyde oxidoreductase, large subunit
aldox-med (glycol)aldehyde oxidoreductase, medium subunit
aldox-small (glycol)aldehyde oxidoreductase, small subunit EZMO1_RS18935
araF L-arabinose ABC transporter, substrate-binding component AraF
araG L-arabinose ABC transporter, ATPase component AraG EZMO1_RS03800
araH L-arabinose ABC transporter, permease component AraH EZMO1_RS03795
araS L-arabinose ABC transporter, substrate-binding component AraS
araT L-arabinose ABC transporter, permease component 1 (AraT)
araU L-arabinose ABC transporter, permease component 2 (AraU)
araUsh L-arabinose ABC transporter, substrate-binding component AraU(Sh)
araV L-arabinose ABC transporter, ATPase component AraV EZMO1_RS25130 EZMO1_RS05725
araVsh L-arabinose ABC transporter, ATPase component AraV(Sh) EZMO1_RS03800
araWsh L-arabinose ABC transporter, permease component 1 AraW(Sh) EZMO1_RS03795
araZsh L-arabinose ABC transporter, permease component 2 AraZ(Sh) EZMO1_RS03795
BT0355 L-arabinose:Na+ symporter
chvE L-arabinose ABC transporter, substrate-binding component ChvE
Echvi_1880 L-arabinose:Na+ symporter
gguA L-arabinose ABC transporter, ATPase component GguA EZMO1_RS03800
gguB L-arabinose ABC transporter, permease component GguB EZMO1_RS03795
glcB malate synthase EZMO1_RS17315
gyaR glyoxylate reductase EZMO1_RS02600 EZMO1_RS01150
KDG-aldolase 2-dehydro-3-deoxy-L-arabinonate aldolase
xacB L-arabinose 1-dehydrogenase EZMO1_RS15100 EZMO1_RS06710
xacC L-arabinono-1,4-lactonase
xacD L-arabinonate dehydratase EZMO1_RS04785
xacE 2-dehydro-3-deoxy-L-arabinonate dehydratase
xacF alpha-ketoglutarate semialdehyde dehydrogenase EZMO1_RS03095 EZMO1_RS18815
xacG L-arabinose ABC transporter, substrate-binding component XacG
xacH L-arabinose ABC transporter, permease component 1 (XacH)
xacI L-arabinose ABC transporter, permease component 2 (XacI)
xacJ L-arabinose ABC transporter, ATPase component 1 (XacJ) EZMO1_RS04365 EZMO1_RS05725
xacK L-arabinose ABC transporter, ATPase component 2 (XacK) EZMO1_RS04365 EZMO1_RS05725
xylFsa L-arabinose ABC transporter, substrate-binding component XylF
xylGsa L-arabinose ABC transporter, ATPase component XylG EZMO1_RS03800 EZMO1_RS17780
xylHsa L-arabinose ABC transporter, permease component XylH EZMO1_RS03795

Confidence: high confidence medium confidence low confidence
transporter – transporters and PTS systems are shaded because predicting their specificity is particularly challenging.

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory