GapMind for catabolism of small carbon sources

 

Alignments for a candidate for fucP in Stenotrophomonas chelatiphaga DSM 21508

Align L-fucose-proton symporter; 6-deoxy-L-galactose permease; L-fucose permease (characterized)
to candidate WP_057508914.1 ABB28_RS12315 glucose/galactose MFS transporter

Query= SwissProt::P11551
         (438 letters)



>NCBI__GCF_001431535.1:WP_057508914.1
          Length = 438

 Score =  269 bits (688), Expect = 1e-76
 Identities = 152/399 (38%), Positives = 233/399 (58%), Gaps = 9/399 (2%)

Query: 33  SLFFLWAVANNLNDILLPQFQQAFTLTNFQAGLIQSAFYFGYFIIPIPAGILMKKLSYKA 92
           ++FF+W     LNDIL+P  +  F L   +A L+Q  F+  YF++ +PAG L+  L YK 
Sbjct: 31  TIFFMWGFLTCLNDILIPHLKAVFELNYARAMLVQFTFFGAYFLMSLPAGRLVAHLGYKK 90

Query: 93  GIITGLFLYALGAALFWPAAEIMNYTLFLVGLFIIAAGLGCLETAANPFVTVLGPESSGH 152
           GI+ GL +  +GA  FWPAAE+  Y+ FL  LF++A G+  L+ AANP+V +LGP  +  
Sbjct: 91  GIVAGLLIAGVGALGFWPAAELREYSAFLGALFVLATGITVLQVAANPYVALLGPVETSS 150

Query: 153 FRLNLAQTFNSFGAIIAVVFGQSLILSNVPHQSQDVLDKMSPEQLSAYKHSLVLSVQTPY 212
            RL LAQ  NS G  IA +FG  LIL N   +S D ++ +S  + +AY+ +   SVQ PY
Sbjct: 151 SRLTLAQALNSLGTAIAPIFGGLLILGNTV-KSADEINALSVAEQAAYRAAEAQSVQGPY 209

Query: 213 MIIVAIVLLVALLIMLTKFPAL--QSDNHSDAKQGSFSASLSRLARIRHWRWAVLAQFCY 270
           + +   ++L+AL + L + P L   ++   D  Q S+ A+L    R RH  +AVL  F Y
Sbjct: 210 IGLAIALVLLALFVYLFRLPTLSESAEKVDDGPQQSYGAAL----RHRHLLFAVLGIFFY 265

Query: 271 VGAQTACWSYLIRY-AVEEIPGMTAGFAANYLTGTMVCFFIGRFTGTWLISRFAPHKVLA 329
           VGA+ +  S+L+ Y ++  I G T   A +Y++       IGRF G+ L++R++P  +LA
Sbjct: 266 VGAEVSIGSFLVNYLSMPTIGGFTEQQATHYVSAYWTMAMIGRFAGSALLTRYSPRHMLA 325

Query: 330 AYALIAMALCLISAFAGGHVGLIALTLCSAFMSIQYPTIFSLGIKNLGQDTKYGSSFIVM 389
            +A I + L   +  + G V L ++     F SI +PTIF+LGI+ LG  T   SS ++M
Sbjct: 326 LFAGINVLLLGTTMASSGQVALYSVVAIGLFNSIMFPTIFALGIERLGPLTNKASSLLIM 385

Query: 390 TIIGGGIVTPVMGFVSDAAGNIPTAELIPALCFAVIFIF 428
            I+GG +V  + G ++D  G  P+  ++P LC+  +  F
Sbjct: 386 AIVGGALVPYLQGVLADHIGLQPSF-ILPLLCYGYVIFF 423


Lambda     K      H
   0.329    0.140    0.425 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 466
Number of extensions: 25
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 438
Length of database: 438
Length adjustment: 32
Effective length of query: 406
Effective length of database: 406
Effective search space:   164836
Effective search space used:   164836
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.1 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.8 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory