GapMind for catabolism of small carbon sources

 

Alignments for a candidate for puuB in Stenotrophomonas chelatiphaga DSM 21508

Align gamma-glutamylputrescine oxidase (EC 1.4.3.-) (characterized)
to candidate WP_057507760.1 ABB28_RS05940 FAD-binding oxidoreductase

Query= reanno::pseudo5_N2C3_1:AO356_21495
         (427 letters)



>NCBI__GCF_001431535.1:WP_057507760.1
          Length = 435

 Score =  339 bits (869), Expect = 1e-97
 Identities = 174/405 (42%), Positives = 255/405 (62%), Gaps = 2/405 (0%)

Query: 7   PESYYAASANPVPPRPALQDDVETDVCVIGAGYTGLSSALFLLENGFKVTVLEAAKVGFG 66
           P S+YAAS  P   +P L  DV+ DV ++GAGYTGLS+AL L   G +V VL+A +VG+G
Sbjct: 16  PPSWYAASVAPRVAQPPLDGDVQVDVAILGAGYTGLSAALELARRGLRVVVLDACRVGWG 75

Query: 67  ASGRNGGQIVNSYSRDIDVIERSVGPQQAQLLGNMAFEGGRIIRERVAKYQIQCDLKDGG 126
           ASGRNGGQ +  Y  ++DV+E+ VG + A+ L + + +G +++R+R+ +Y+I C    G 
Sbjct: 76  ASGRNGGQALVGYGCEVDVLEKQVGVEDARTLFDYSRQGVQLLRDRIDQYRIDCHWVPGH 135

Query: 127 VFAALTAKQMGHLE-SQKRLWERFGHTQLELLDQRRIREVVACEEYVGGMLDMSGGHIHP 185
               +T +Q   L+   +RL  R+ +  ++  D+  +R  +    Y G M D   GH+HP
Sbjct: 136 ANVPITTRQSQALQRDMERLTTRYDYP-MQWWDRATLRAQLDSPRYQGAMFDPLSGHLHP 194

Query: 186 LNLALGEAAAVESLGGVIYEQSPAVRIERGASPVVHTPQGKVRAKFIIVAGNAYLGNLVP 245
           L  A G A A  + G VI+E +P + ++R   P + T  G V A  +++AGNA+L  + P
Sbjct: 195 LAYAQGLADAAIAAGAVIHEHTPVLELQRTPHPALRTATGTVHAAHVLLAGNAWLEGIAP 254

Query: 246 ELAAKSMPCGTQVIATEPLGDELAHSLLPQDYCVEDCNYLLDYYRLTGDKRLIFGGGVVY 305
           EL    MP GT V AT  LG+  A +L+  D  V D   +LDY+RL+ D R++FGGG  Y
Sbjct: 255 ELERHVMPVGTYVGATPVLGEARARALIRNDMAVSDTGLVLDYFRLSHDHRVLFGGGASY 314

Query: 306 GARDPANIEAIIRPKMLKAFPQLKDVKIDYAWTGNFLLTLSRLPQVGRLGDNIYYSQGCS 365
            +R PA ++++++ ++ + FPQL+ V ++Y W G   +T SR P  GRL  +IY++QG S
Sbjct: 315 SSRPPAGLDSVMQRRLWQVFPQLQGVPLEYLWGGYVDITPSRAPHWGRLTPDIYFAQGFS 374

Query: 366 GHGVTYTHLAGKVLAEALRGQAERFDAFADLPHYPFPGGQLLRTP 410
           GHGV   +LAG+V+AEA+ GQA R D F  LPH PFPGG+LLRTP
Sbjct: 375 GHGVAAANLAGQVIAEAIAGQAARLDVFERLPHRPFPGGRLLRTP 419


Lambda     K      H
   0.320    0.139    0.421 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 571
Number of extensions: 34
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 427
Length of database: 435
Length adjustment: 32
Effective length of query: 395
Effective length of database: 403
Effective search space:   159185
Effective search space used:   159185
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory