GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gntB in Halomonas desiderata SP1

Align TRAP-type large permease component (characterized, see rationale)
to candidate WP_086510923.1 BZY95_RS16160 TRAP transporter large permease

Query= uniprot:Q930R2
         (425 letters)



>NCBI__GCF_002151265.1:WP_086510923.1
          Length = 427

 Score =  322 bits (824), Expect = 2e-92
 Identities = 170/414 (41%), Positives = 259/414 (62%), Gaps = 2/414 (0%)

Query: 3   LVVFIVSLLGAMAIGVPVAFSLMFCGVVLMWYMGMFNTQIIAQNMIAGADTFTLLAIPFF 62
           +V+F V LL  + +G+P+AF+L    +  +   G+  T I+ Q M +G DTF LL IP F
Sbjct: 4   MVLFGVFLL-LLVLGLPIAFALGISSLAYLLLEGISLT-IVPQRMYSGIDTFVLLCIPGF 61

Query: 63  ILAGELMNAGGLSRRIIDFAIACVGHIRGGLGIVAIMAAVIMASISGSAAADTAALAAIL 122
           +LAG LMN G ++  I+ F+ A VGHIRGGLG+  +  ++I   ISG+A AD A++ +++
Sbjct: 62  VLAGNLMNVGNITEHIVRFSNAVVGHIRGGLGLANVGGSMIFGGISGTAVADAASIGSVM 121

Query: 123 IPMMAKAGYNVPRSAGLIAAGGVIAPVIPPSMAFIVFGVAANVSITQLFMAGIVPGLIMG 182
           IP MA++GY+ P +A + AA   I P+IPPS+  I+ G  A VS+ ++F+AG VPGL++G
Sbjct: 122 IPGMARSGYDKPFAAAVTAASSTIGPIIPPSVPMIIVGSLAGVSVGRMFLAGAVPGLLLG 181

Query: 183 IALVATWLLVVRKDDIQPLPRTPMKERVGATGRALWALGMPVIILGGIKAGVVTPTEAAV 242
           +A++ T  L+  K       R  ++E +     A WAL M VIIL GI  G  TPTEA++
Sbjct: 182 VAMMITVYLLAVKRGYPKGRRATLRELLREGRTAFWALLMTVIILYGIIGGFFTPTEASI 241

Query: 243 VAAVYALFVGMVIYRELKPRDLPGVILQAAKTTAVIMFLVCAALVSSWLITAANIPSEIT 302
           VA++YAL VGM +Y+ L  R LP ++     T++ ++ LV  A +  W++T+  IP  I 
Sbjct: 242 VASLYALVVGMYVYKGLTWRKLPAILTDTVLTSSALLLLVGLANLFGWILTSQQIPQTIA 301

Query: 303 GFISPLIDRPTLLMFVIMLVVLVVGTALDLTPTILILTPVLMPIIKQAGIDPVYFGVLFI 362
             I  + D P +++ ++ L++L VG  ++    ++IL P L+ +    G+DPV+F V+ +
Sbjct: 302 ALIMAISDNPIVVILILNLILLFVGAFMETIAALIILFPALLGVATGIGMDPVHFAVMAV 361

Query: 363 MNTCIGLLTPPVGVVLNVVSGVGRVPLGKVIVGVTPFLVAQILVLFLLVLFPDI 416
           +N  IGL TPPVGV L VVSG+G++ +  V   + PFLV  ILVL L+   P I
Sbjct: 362 LNLMIGLTTPPVGVCLFVVSGIGKLQMLTVARAILPFLVCNILVLLLVAYVPAI 415


Lambda     K      H
   0.331    0.145    0.430 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 473
Number of extensions: 20
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 2
Number of HSP's successfully gapped: 1
Length of query: 425
Length of database: 427
Length adjustment: 32
Effective length of query: 393
Effective length of database: 395
Effective search space:   155235
Effective search space used:   155235
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 15 ( 7.2 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 40 (21.9 bits)
S2: 51 (24.3 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory