GapMind for catabolism of small carbon sources

 

Alignments for a candidate for gcdG in Halomonas desiderata SP1

Align succinyl-CoA-glutarate CoA-transferase (EC 2.8.3.13) (characterized)
to candidate WP_086508284.1 BZY95_RS01740 CoA transferase

Query= reanno::pseudo5_N2C3_1:AO356_10845
         (406 letters)



>NCBI__GCF_002151265.1:WP_086508284.1
          Length = 401

 Score =  238 bits (608), Expect = 2e-67
 Identities = 152/406 (37%), Positives = 218/406 (53%), Gaps = 18/406 (4%)

Query: 4   LSHLRVLDLSRVLAGPWAGQILADLGADVIKVERPGNGDDTRAWGPPFLKDARGENTTEA 63
           L+ L+VL+L +++AGP+A ++L + GADVIKVE PG GD  R W    ++D        +
Sbjct: 11  LAGLKVLELGQLIAGPFATKLLGEFGADVIKVEPPGTGDPLRKWR--IIEDGT------S 62

Query: 64  AYYLSANRNKQSVTIDFTRPEGQRLVRELAAKSDILIENFKVGGLAAYGLDYDSLKAINP 123
            ++   +R K+S+T+D    EGQ +VR LAA++D+L+ENF+ G L  +GL Y++L   NP
Sbjct: 63  LWWHVQSRTKRSITLDLRSEEGQDMVRRLAAEADVLVENFRPGTLEGWGLGYEALAKHNP 122

Query: 124 QLIYCSITGFGQTGPYAKRAGYDFMIQGLGGLMSLTGRPEGDEGAGPVKVGVALTDILTG 183
            LI   ++GFGQ+GPY  + G+  + + +GGL  LTG+P    G   V+VGV++ D L+ 
Sbjct: 123 GLIMVRVSGFGQSGPYRDKPGFGVIGEAMGGLRYLTGQP----GEPSVRVGVSIGDSLSA 178

Query: 184 LYSTAAILAALAHRDHVGGGQHIDMALLDVQVACLANQAMNYLTTGNAPKRLGNAHPNIV 243
           LY+    L AL  R   G GQ ID+AL +   A + +    Y  TG   +  G+A P I 
Sbjct: 179 LYAVIGTLLALQERARSGLGQEIDVALYESVFAMMESLLPEYDATGEVREPSGSALPGIT 238

Query: 244 PYQDFPTADGDFILTVGN-DGQFRKFAEVAGQPQWADDPRFATNKVRVANRAVLIPLIRQ 302
           P   + T  GDF+L  GN D  F++   V G+   A+DP  A N  R      +   I  
Sbjct: 239 PSNAYRTRHGDFVLIAGNGDSIFKRLMGVIGRQDLAEDPELAHNDGRSRRAEEIDAAIEA 298

Query: 303 ATVFKTTAEWVTQLEQAGVPCGPINDLAQVFADPQVQARGLAMEL--PHLLAGKVPQVAS 360
            T        +  L+ A VPCG     A + +DP   AR +   +  P+    KVP V  
Sbjct: 299 WTCQHDRDAILAALDDARVPCGYPYTAADIASDPHYLAREMIQTITRPNGKPLKVPGVLP 358

Query: 361 PIRLSETPVEYRNAPPLLGEHTLEVLQRVLGLDEAAVMAFREAGVL 406
             RLS TP    N  P LG+HT EVL   LG+D       R AG++
Sbjct: 359 --RLSATPGRLGNGGPALGQHTDEVLDE-LGIDSETRAKLRAAGII 401


Lambda     K      H
   0.319    0.137    0.408 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 472
Number of extensions: 21
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 406
Length of database: 401
Length adjustment: 31
Effective length of query: 375
Effective length of database: 370
Effective search space:   138750
Effective search space used:   138750
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory