GapMind for catabolism of small carbon sources

 

Alignments for a candidate for prpF in Halomonas desiderata SP1

Align 2-methyl-aconitate isomerase; Cis-trans isomerase; EC 5.3.3.- (characterized)
to candidate WP_086511661.1 BZY95_RS20070 2-methylaconitate cis-trans isomerase PrpF

Query= SwissProt::Q937N7
         (396 letters)



>NCBI__GCF_002151265.1:WP_086511661.1
          Length = 392

 Score =  645 bits (1664), Expect = 0.0
 Identities = 322/396 (81%), Positives = 349/396 (88%), Gaps = 4/396 (1%)

Query: 1   MTHVPQIKIPATYIRGGTSKGVFFRLQDLPETAQVPGPARDALLMRVIGSPDPYGKQIDG 60
           M +VPQIKIPATY+RGGTSKGVFFRL DLPE AQ PGPARDALL+RVIGSPDPY KQIDG
Sbjct: 1   MANVPQIKIPATYMRGGTSKGVFFRLDDLPEAAQKPGPARDALLLRVIGSPDPYQKQIDG 60

Query: 61  MGAATSSTSKTVILSKSTRPDHDVDYLFGQVSIDQPFVDWSGNCGNLSAAVGPFAISAGL 120
           MG ATSSTSKTVILSKS   DHDVDYLFGQVSID+PFVDWSGNCGNLSAAVGPFAIS GL
Sbjct: 61  MGGATSSTSKTVILSKSESADHDVDYLFGQVSIDKPFVDWSGNCGNLSAAVGPFAISNGL 120

Query: 121 VDASRIPHNGVAVVRIWQANIGKTIIGHVPVTNGEVQETGDFELDGVTFPAAEVQLEFMD 180
           VD SRIP NG+A VRIWQANIGKTI+  VP+TNG+VQETGDFELDGVTFPAAEV +EFMD
Sbjct: 121 VDPSRIPENGIATVRIWQANIGKTIVSRVPITNGQVQETGDFELDGVTFPAAEVAVEFMD 180

Query: 181 PAAEEEGAGGAMFPTGNVVDDLEVPAVGTLKATMINAGIPTIFVNAESIGYTGTELQDAI 240
           PA  E    GAMFPTGN+VD+LEVP VGTL+ATMINAGIPT+FVNA +IGY+GTELQ+AI
Sbjct: 181 PADGE----GAMFPTGNLVDELEVPGVGTLEATMINAGIPTVFVNAGAIGYSGTELQEAI 236

Query: 241 NSDTRALAMFEDHPCYGALRMGLIKNVDEAAKRQHTPKVAFVRQAGDYVASSGKKVAAAD 300
           N DTRALAMFE    + A+RMGLIK V EAA+RQHTPKVAFV    DYVASSGK + A D
Sbjct: 237 NGDTRALAMFESIRAHAAVRMGLIKEVSEAAERQHTPKVAFVAPPADYVASSGKAIKAGD 296

Query: 301 VDLLVRALSMGKLHHAMMGTAAVAIGTAAAIPGTLVNLAAGGGERNAVRFGHPSGTLRVG 360
           +DL+VRALSMGKLHHAMMGTAAVAI TAAA+PGTLVNLAAGGGERN+V FGHPSGTLRVG
Sbjct: 297 IDLVVRALSMGKLHHAMMGTAAVAIATAAAVPGTLVNLAAGGGERNSVHFGHPSGTLRVG 356

Query: 361 AEAQQVDGEWAVKKAIMSRSARVLMEGWVRVPGDAF 396
           AEA Q  G+W   KA+MSRSARVLMEGWVR+PGDAF
Sbjct: 357 AEASQTAGQWTATKAVMSRSARVLMEGWVRIPGDAF 392


Lambda     K      H
   0.317    0.134    0.394 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 592
Number of extensions: 13
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 396
Length of database: 392
Length adjustment: 31
Effective length of query: 365
Effective length of database: 361
Effective search space:   131765
Effective search space used:   131765
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Sep 24 2021. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory