GapMind for Amino acid biosynthesis

 

Alignments for a candidate for asp-kinase in Herbaspirillum seropedicae SmR1

Align homoserine dehydrogenase (EC 1.1.1.3); aspartate kinase (EC 2.7.2.4) (characterized)
to candidate HSERO_RS10460 HSERO_RS10460 homoserine dehydrogenase

Query= BRENDA::Q9WZ17
         (739 letters)



>FitnessBrowser__HerbieS:HSERO_RS10460
          Length = 436

 Score =  213 bits (541), Expect = 2e-59
 Identities = 135/406 (33%), Positives = 220/406 (54%), Gaps = 9/406 (2%)

Query: 17  VRKVRVGIAGLGTVGGSIYRILKERGNEIEKRIGEKFIISKVINRSPQKYELLGVPKEEI 76
           ++ ++VG+ G+GTVG   + +LK    EI +R G    I+ V + + ++   L   + ++
Sbjct: 1   MKSIKVGLLGIGTVGSGTFNVLKRNQEEIARRAGRGIEITMVADLNTERATELTNGEVKV 60

Query: 77  AFDFDDLILNSDV--VVEAIGGTDVAVDLVRRALELGRIVVTPNKNLISEYGNEFSEYIK 134
             D + ++ N D+  V+E IGG  +A DLV +A+  G+ VVT NK LI+ +GNE  +  +
Sbjct: 61  VNDANLVVSNPDIDIVIELIGGYGIAKDLVLKAIANGKHVVTANKALIATHGNEIFKAAQ 120

Query: 135 KRKLF--FEASVGGGIPIISLLQDYLIFQKVTRIRGIMNGTTNYILTEM-SKGRHFEEVL 191
           ++ +   FEA+V GGIPII  L++ L   ++  I GI+NGTTN+IL+EM  KG  F+ VL
Sbjct: 121 EKGVMVAFEAAVAGGIPIIKALREGLTANRIQWIAGIINGTTNFILSEMRDKGLDFDVVL 180

Query: 192 KEAQELGYAEADPTNDIEGYDVAYKVSVLAGVVTGRFPGINSVQFEGITRIDPEYLKEIV 251
           KEAQ LGYAEADPT DIEG D A+K++++A +  G     +    EGIT++    +    
Sbjct: 181 KEAQRLGYAEADPTFDIEGVDAAHKLTIMASIAFGIPVQFDKAHVEGITKLQASDITYAE 240

Query: 252 RSGKKLKLIGELDFSTNRYEVRLRE--VTPEDPFFNVDGVDNAIEVSTDLAGDFLLKGRG 309
           + G ++KL+G    +    E+R+    +       NV+G  NA+ V  D  G+ L  G+G
Sbjct: 241 QLGYRIKLLGITRQTAKGIELRVHPTLIPAARLIANVEGAMNAVVVRGDAVGETLYYGKG 300

Query: 310 AGGYPTASAVIADLFRVAKYKVLGGAEKFSVVVMKFGGAAISDVEKLEKVAEKIIKRKKS 369
           AG  PTASAVIADL  + +        +   +  +    A + V  + +V+     R + 
Sbjct: 301 AGSEPTASAVIADLVDITRLATADPEHRVPYLAFQPNAMADTPVLPMSEVSTSYYLRMRV 360

Query: 370 GVKPVVVLSAMGDTTDHLIELAKTIDENP--DPRELDLLLSTGEIQ 413
             +  V+        D  I +   + + P    ++ D+++ T + Q
Sbjct: 361 ADQAGVLADVTRILADSTISIDAMLQKEPAEGEQQTDIIMLTHQTQ 406


Lambda     K      H
   0.318    0.137    0.377 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 738
Number of extensions: 31
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 739
Length of database: 436
Length adjustment: 36
Effective length of query: 703
Effective length of database: 400
Effective search space:   281200
Effective search space used:   281200
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory