GapMind for Amino acid biosynthesis

 

Alignments for a candidate for DAPtransferase in Sinorhizobium meliloti 1021

Align LL-diaminopimelate aminotransferase; DAP-AT; DAP-aminotransferase; LL-DAP-aminotransferase; EC 2.6.1.83 (characterized)
to candidate SMc04386 SMc04386 aspartate aminotransferase B protein

Query= SwissProt::Q2RK33
         (390 letters)



>FitnessBrowser__Smeli:SMc04386
          Length = 410

 Score =  176 bits (446), Expect = 1e-48
 Identities = 120/397 (30%), Positives = 198/397 (49%), Gaps = 24/397 (6%)

Query: 2   QEARRIRELPPYLFARIEKKIAEARERGVDIISLGIGDPDMPTPSHVIDKLVAEAHNPEN 61
           Q A RI  +      +I  + A  +  G  +I LG G+PD  TP HV        H  E 
Sbjct: 13  QPASRISSIGVSEILKIGARAAAMKREGKPVIILGAGEPDFDTPEHVKQAASDAIHRGET 72

Query: 62  HRYPTSEGLLAFRQAVADWYQRLYGV--DLDPRREVVTLIGSKEGIAHISLCYVDPGDIN 119
            +Y   +G    ++A+ + +QR  G+  +LD   E+    G+K+ + +  +  +DPGD  
Sbjct: 73  -KYTALDGTPELKKAIREKFQRENGLAYELD---EITVATGAKQILFNAMMASLDPGDEV 128

Query: 120 LVPDPGYPVYNIGTLLAGGESYFMPLTAANGFLPDLGAIPSDVARRAKLMFINYPNNPTG 179
           ++P P +  Y+    +  G+   +   A++GF      + + +  R + + +N P+NP+G
Sbjct: 129 IIPTPYWTSYSDIVHICEGKPVLIACDASSGFRLTAEKLEAAITPRTRWVLLNSPSNPSG 188

Query: 180 AVADLKFFQEVVE-FARSYDLIVCHDAAYSEITYDGYR--APSFLQAPGAKEVGIEFNSV 236
           A      ++ ++E   R   + +  D  Y  I YDG+R   P+ L+ PG K   +  N V
Sbjct: 189 AAYSAADYRPLLEVLLRHPHVWLLVDDMYEHIVYDGFRFVTPAQLE-PGLKNRTLTVNGV 247

Query: 237 SKPYNMTGWRLGWACGRADVIEALARIKSNIDSGAFQAVQYAGIAALTGPQEGLAEVRRV 296
           SK Y MTGWR+G+A G  ++I+A+A ++S   S      Q A +AAL GPQ+ L E    
Sbjct: 248 SKAYAMTGWRIGYAGGPRELIKAMAVVQSQATSCPSSISQAASVAALNGPQDFLKERTES 307

Query: 297 YQERRDIIVEGFNSL-GWHLEKPKATFYVWA--------PVPRG---YTSASFAEMVLEK 344
           +Q RRD++V G N++ G     P+  FY ++          P G    T   F   +LE 
Sbjct: 308 FQRRRDLVVNGLNAIDGLDCRVPEGAFYTFSGCAGVLGKVTPSGKRIKTDTDFCAYLLED 367

Query: 345 AGVIITPGNGYGNYGEGYFRIALTISKERMQEAIERL 381
           A V + PG+ +G     +FRI+   S+  ++EA+ER+
Sbjct: 368 AHVAVVPGSAFGL--SPFFRISYATSEAELKEALERI 402


Lambda     K      H
   0.320    0.139    0.421 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 359
Number of extensions: 18
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 390
Length of database: 410
Length adjustment: 31
Effective length of query: 359
Effective length of database: 379
Effective search space:   136061
Effective search space used:   136061
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory