GapMind for Amino acid biosynthesis

 

Alignments for a candidate for DAPtransferase in Pseudomonas fluorescens FW300-N1B4

Align LL-diaminopimelate aminotransferase; DAP-AT; DAP-aminotransferase; LL-DAP-aminotransferase; EC 2.6.1.83 (characterized)
to candidate Pf1N1B4_5070 Aspartate aminotransferase (EC 2.6.1.1)

Query= SwissProt::Q2RK33
         (390 letters)



>FitnessBrowser__pseudo1_N1B4:Pf1N1B4_5070
          Length = 404

 Score =  156 bits (395), Expect = 9e-43
 Identities = 114/392 (29%), Positives = 187/392 (47%), Gaps = 18/392 (4%)

Query: 5   RRIRELPPYLFARIEKKIAEARERGVDIISLGIGDPDMPTPSHVIDKLVAEAHNPENHRY 64
           +R+    P    RI  ++AE R +G  IISL  G+PD  TP HV +  +  A    + RY
Sbjct: 10  QRLASAQPSATYRIMDRVAERRAQGAKIISLCAGEPDFDTPKHVREAAI-HAIEHGHTRY 68

Query: 65  PTSEGLLAFRQAVADWYQRLYGVDLDPRREVVTLIGSKEGIAHISLCYVDPGDINLVPDP 124
               G+ + R+AVA  ++R  G+D+   ++ +   G K+ I +     ++ GD  +VP P
Sbjct: 69  TQVAGVRSLREAVAAKFRRENGLDVS-WQDTLVCNGGKQVIYNALAATLNEGDQVIVPAP 127

Query: 125 GYPVYNIGTLLAGGESYFMPLTAANGFLPDLGAIPSDVARRAKLMFINYPNNPTGAVADL 184
            +  Y     L GGE+  +   A  GF     A+ + +  + + + +N P+NPTGAV   
Sbjct: 128 YWVSYPEMVQLCGGEARIVTCDADTGFKLTPAALAAAITPQTRWLILNSPSNPTGAVYSE 187

Query: 185 KFFQEVVEFARSYD-LIVCHDAAYSEITYDGYRAPSFLQA-PGAKEVGIEFNSVSKPYNM 242
              + +      +  +++  D  Y  + +D     +  Q  P      +  N VSK Y M
Sbjct: 188 TELRALAAVLLDHPHVLILADDIYEHLIFDDQAFYTLAQVEPRLAPRTLTMNGVSKAYAM 247

Query: 243 TGWRLGWACGRADVIEALARIKSNIDSGAFQAVQYAGIAALTGPQEGLAEVRRVYQERRD 302
           TGWR+G+A G   ++EA+ +++    SGA    Q A +AAL GP++ + E R  +Q RRD
Sbjct: 248 TGWRIGFATGPRWLLEAMEKLQGQQTSGASSVSQQAALAALEGPKDFIRESRAAFQARRD 307

Query: 303 IIVEGFNSL-GWHLEKPKATFYVWAPV--------PRG---YTSASFAEMVLEKAGVIIT 350
           ++V   N   G     P   FY +A          P G   +T    A  +L++A V + 
Sbjct: 308 LMVTLLNDTPGLECVSPAGAFYAFASCARLIGRTSPAGRVLHTDEDVAHALLDEADVAVV 367

Query: 351 PGNGYGNYGEGYFRIALTISKERMQEAIERLR 382
            G+ +G     Y RIA  +    +++A E +R
Sbjct: 368 HGSAFGL--GPYIRIAYALDDASLRQACEAIR 397


Lambda     K      H
   0.320    0.139    0.421 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 333
Number of extensions: 19
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 390
Length of database: 404
Length adjustment: 31
Effective length of query: 359
Effective length of database: 373
Effective search space:   133907
Effective search space used:   133907
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory