GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hom in Pseudomonas fluorescens FW300-N1B4

Align homoserine dehydrogenase (EC 1.1.1.3); aspartate kinase (EC 2.7.2.4) (characterized)
to candidate Pf1N1B4_3451 Aspartokinase (EC 2.7.2.4)

Query= BRENDA::Q9WZ17
         (739 letters)



>FitnessBrowser__pseudo1_N1B4:Pf1N1B4_3451
          Length = 413

 Score =  340 bits (873), Expect = 6e-98
 Identities = 185/405 (45%), Positives = 272/405 (67%), Gaps = 6/405 (1%)

Query: 339 SVVVMKFGGAAISDVEKLEKVAEKIIKRKKSGVKPVVVLSAMGDTTDHLIELAKTI--DE 396
           +++V KFGG ++  VE++E+VA+K+ K +++G   VVVLSAM   T+ LI+LAK I  D 
Sbjct: 2   ALIVQKFGGTSVGTVERIEQVADKVKKFREAGDDLVVVLSAMSGETNRLIDLAKQISGDG 61

Query: 397 NPDPRELDLLLSTGEIQSVALMSIALRKRGYKAISFTGNQLKIITDKRYGSARIIDINTD 456
            P PRELD+++STGE  ++AL+++AL KRG  A+S+TGNQ++I+TD  +  ARI+ I+  
Sbjct: 62  QPVPRELDVIVSTGEQVTIALLAMALIKRGVPAVSYTGNQVRILTDSAHNKARILQIDDQ 121

Query: 457 IISRYLKQDFIPVVAGFQGITETGDITTLGRGGSDLTAIALAYSLGADLCELYKDVDGVY 516
            I   LK   + VVAGFQG+ E G+ITTLGRGGSD T +ALA +L AD C++Y DVDGVY
Sbjct: 122 KIRGDLKAGRVVVVAGFQGVDEHGNITTLGRGGSDTTGVALAAALKADECQIYTDVDGVY 181

Query: 517 TADPRIVKDARVIKELSWEEMIELSRHGAQVLQARAAEFARKYGVKVLIKNAHKETRGTL 576
           T DPR+V  A+ + ++++EEM+E++  G++VLQ RA EFA KY V + + ++ KE  GTL
Sbjct: 182 TTDPRVVSVAQRLDKITFEEMLEMASLGSKVLQIRAVEFAGKYNVPLRVLHSFKEGPGTL 241

Query: 577 IW--EGTKVENPIVRAVTFEDGMAKVVLKDVPDKPGVAARIMRTLSQMGVNIDMIIQGMK 634
           I   E   +E PI+  + F    AK+ ++ VPD PGVA +I+  +S   + +DMI+Q + 
Sbjct: 242 ITIDEEETMEQPIISGIAFNRDEAKLTIRGVPDTPGVAFKILGPISAANIEVDMIVQNVA 301

Query: 635 SGEYNTVAFIVPESQLGKLDIDLLKTRSE--AKEIIIEKGLAKVSIVGVNLTSTPEISAT 692
                   F V  +        L  T  E  A+E++ +  +AKVSIVGV + S   +++ 
Sbjct: 302 HDNTTDFTFTVHRNDYQAAQTVLENTAREIGAREVVGDTKIAKVSIVGVGMRSHAGVASR 361

Query: 693 LFETLANEGINIDMISASSSRISVIIDGKYVEDAVKAIHSRFELD 737
           +FE+LA E INI MIS S  ++SV+I+ KY+E AV+A+H+ FELD
Sbjct: 362 MFESLAKESINIQMISTSEIKVSVVIEEKYLELAVRALHTAFELD 406


Lambda     K      H
   0.318    0.137    0.377 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 726
Number of extensions: 34
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 2
Number of HSP's successfully gapped: 1
Length of query: 739
Length of database: 413
Length adjustment: 36
Effective length of query: 703
Effective length of database: 377
Effective search space:   265031
Effective search space used:   265031
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory