GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hom in Cereibacter sphaeroides ATCC 17029

Align homoserine dehydrogenase (EC 1.1.1.3); aspartate kinase (EC 2.7.2.4) (characterized)
to candidate WP_011337028.1 RSPH17029_RS02525 aspartate kinase

Query= BRENDA::Q9WZ17
         (739 letters)



>NCBI__GCF_000015985.1:WP_011337028.1
          Length = 419

 Score =  280 bits (717), Expect = 8e-80
 Identities = 154/414 (37%), Positives = 259/414 (62%), Gaps = 16/414 (3%)

Query: 340 VVVMKFGGAAISDVEKLEKVAEKIIKRKKSGVKPVVVLSAMGDTTDHLIELAKTIDENPD 399
           ++VMKFGG +++D+ +++  A+K+ +  + G   +V++SAM   T+ L+   +      D
Sbjct: 3   LLVMKFGGTSVADLARIKNAAQKVKREVERGYDVIVIVSAMSGKTNELVGWVEQTSPLFD 62

Query: 400 PRELDLLLSTGEIQSVALMSIALRKRGYKAISFTGNQLKIITDKRYGSARIIDINTDIIS 459
            RE D ++S+GE  +  LM++ L++    A S+ G Q+ I T  ++ +AR ++I  + + 
Sbjct: 63  AREYDAVVSSGENVTAGLMALTLQEMEVPARSWQGWQVPIRTTSQHSAARFLEIPRENLD 122

Query: 460 RYLKQDF-IPVVAGFQGITETGDITTLGRGGSDLTAIALAYSLGADLCELYKDVDGVYTA 518
               + F + VVAGFQG++  G ITTLGRGGSD TA+A A +  A+ C++Y DVDGVYT 
Sbjct: 123 AKFAEGFKVAVVAGFQGVSPEGRITTLGRGGSDTTAVAFAAAFAAERCDIYTDVDGVYTT 182

Query: 519 DPRIVKDARVIKELSWEEMIELSRHGAQVLQARAAEFARKYGVKVLIKNAHK---ETRGT 575
           DPRI   AR ++++++EEM+EL+  GA+VLQ R+ E A +Y VK+ + ++ +   ET GT
Sbjct: 183 DPRIASKARKLEKIAYEEMLELASLGAKVLQTRSVELAMRYKVKLRVLSSFEDTDETSGT 242

Query: 576 LIWEGTKV-ENPIVRAVTFEDGMAKVVLKDVPDKPGVAARIMRTLSQMGVNIDMIIQGMK 634
           L+ +   + E+ +V  V +    AK+ L  V D+PGVAA I   L++ GVN+DMI+Q + 
Sbjct: 243 LVCDEEDIMESKVVSGVAYSRDEAKMTLVTVEDRPGVAAAIFGPLAEAGVNVDMIVQNIS 302

Query: 635 SGEYNT-------VAFIVPESQLGKLDIDLLKTRSEA----KEIIIEKGLAKVSIVGVNL 683
             +Y +       + F  P +Q+ +    L   ++E      +++++  +AKVS+VG+ +
Sbjct: 303 EKDYGSHPGSVTDMTFSCPINQVARARKALEDAKAEGTIVYDDLVVDTEVAKVSVVGIGM 362

Query: 684 TSTPEISATLFETLANEGINIDMISASSSRISVIIDGKYVEDAVKAIHSRFELD 737
            S   ++AT+F+ LA +G+NI +I+ S  +ISV+ID KY+E AV+A+H  F L+
Sbjct: 363 RSHAGVAATMFKALAADGVNIKVIATSEIKISVLIDRKYMELAVQALHDAFALE 416


Lambda     K      H
   0.318    0.137    0.377 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 636
Number of extensions: 31
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 739
Length of database: 419
Length adjustment: 36
Effective length of query: 703
Effective length of database: 383
Effective search space:   269249
Effective search space used:   269249
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory