GapMind for Amino acid biosynthesis

 

Alignments for a candidate for tyrB in Clostridium kluyveri DSM 555

Align Aspartate/prephenate aminotransferase; AspAT / PAT; EC 2.6.1.1; EC 2.6.1.78 (characterized)
to candidate WP_012101965.1 CKL_RS07720 pyridoxal phosphate-dependent aminotransferase

Query= SwissProt::Q8KDS8
         (400 letters)



>NCBI__GCF_000016505.1:WP_012101965.1
          Length = 398

 Score =  201 bits (510), Expect = 4e-56
 Identities = 126/401 (31%), Positives = 217/401 (54%), Gaps = 26/401 (6%)

Query: 10  LSRRVLSMQESQTMKITGLAKKMQAEGKDVVSLSAGEPDFPTPENVCEAGIEAIRKGFTR 69
           LS R+L+MQ S   K+   A + +  G  V  L+ G+PD  TP+   +A IE  ++   +
Sbjct: 3   LSNRILNMQFSPIRKLAPYAAEAKKRGIKVYHLNIGQPDVLTPDIFFKA-IENFKENVLK 61

Query: 70  YTANSGIPELKKAIIRKLQRDNGLEYAEDEIIVSNGGKQALANTFLALCDEGDEVIVPAP 129
           YT + G+  L+++ I   ++  G E++++E+IV+NGG +A+  TF+ +CD GDE++ P P
Sbjct: 62  YTDSQGMDALQESFIEYYKKW-GTEFSKEELIVTNGGSEAIMLTFMTICDPGDEIVSPEP 120

Query: 130 YWVSFPEMARLAEATPVIVETSIETGYKMTPEQ-LAAAITPKTRILVLNSPSNPSGAVYN 188
           ++ ++   A  A A  V   T  E G+ +  ++ +   ITP+T+ L++++P NP+G VY 
Sbjct: 121 FYTNYNGFAESASAKMVPFLTKAEDGFHLPDKKSIENKITPRTKALMISNPGNPTGTVYT 180

Query: 189 EAEVRALMQVIEGKEIFVLSDEMYDMICYGGVRPFSPARIPEMKPWVIVSNGTSKSYSMT 248
             E+R L  +++  ++++++DE+Y    Y G++  S   + ++   VI+ +  SK YS  
Sbjct: 181 AEELRMLADIVKEHDLYLIADEVYREFVYDGLKYTSTLTLKDIADRVIIVDSISKRYSAC 240

Query: 249 GWRIGYLAAP-KWIINACDKIQSQTTSNANSIAQKAAVAALDGDQSIVEQRRAEFEKRRD 307
           G RIG +A+  K  ++   K+  QT     ++ Q  A A  D   S   + R E+EKRR+
Sbjct: 241 GARIGLVASKNKEFMHNIMKL-CQTRLCVPTVEQIGAAALKDTPDSYFVETRKEYEKRRN 299

Query: 308 FMFRELNTISGIECTLPEGAFYIFPSIKGLLGKTFGGKVMKDSTDVAEYLLTE-----HY 362
            +   L  I GI C  P GAFYI   +            + D+ D A++LLT+       
Sbjct: 300 ILMESLQKIPGIICRKPSGAFYIVAKLP-----------ISDAQDFAKFLLTDFNKDGKT 348

Query: 363 VATVPGDAFGAPENL-----RLSYAASIEELAEAVNRIRKA 398
           V   P D F A E L     R+SY  + ++L +A++ ++ A
Sbjct: 349 VMVAPADGFYATEGLGKDEIRISYCLNCDDLKDAMDLLKIA 389


Lambda     K      H
   0.316    0.132    0.376 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 388
Number of extensions: 23
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 400
Length of database: 398
Length adjustment: 31
Effective length of query: 369
Effective length of database: 367
Effective search space:   135423
Effective search space used:   135423
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory