GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD'B in Crocosphaera subtropica ATCC 51142

Align Succinylornithine transaminase (EC 2.6.1.81) (characterized)
to candidate WP_009547763.1 CCE_RS14630 aspartate aminotransferase family protein

Query= reanno::Koxy:BWI76_RS11670
         (406 letters)



>NCBI__GCF_000017845.1:WP_009547763.1
          Length = 422

 Score =  344 bits (883), Expect = 2e-99
 Identities = 185/409 (45%), Positives = 253/409 (61%), Gaps = 9/409 (2%)

Query: 2   SQSITRSNFDEWMMPVYAPAAFIPVRGEGSRLWDQQGKEYIDFAGGIAVNALGHAHPRLV 61
           ++S    +FD ++M  Y        RGEG RLWD +GKEY+DF  GIA   LGH HP LV
Sbjct: 11  AKSFDPQHFDNYVMHTYGRFPIAIDRGEGCRLWDTKGKEYLDFVAGIATCTLGHGHPALV 70

Query: 62  KALTEQAGKFWHTGNGYTNEPVLRLAKQLIDATFADRVFFCNSGAEANEAALKLARKYAH 121
           K ++EQ     H  N Y       LA+ +I+ + AD+VFFCNSGAEANEAA+KL RKY+H
Sbjct: 71  KTVSEQIQSLHHVSNLYYIPQQGELAQWMIEHSCADKVFFCNSGAEANEAAIKLIRKYSH 130

Query: 122 DRFG-SEKSGIVAFKNAFHGRTLFTVSAGGQPAYSQDFAPLPPQIQHAIYNDLDSAKALI 180
                 E+  I+  K +FHGRTL T++A GQP Y QDF PL P   +  YND+ + +  I
Sbjct: 131 TVLDFLEQPVILTAKASFHGRTLATITATGQPKYQQDFEPLMPGFAYVPYNDIKAIEHAI 190

Query: 181 DD------NTCAVIVEPMQGEGGVVPADADFLRGLRELCDAHNALLIFDEVQTGVGRTGE 234
            D         A+++EP+QGEGGV P + ++   LR++CD +N LL+FDEVQ GVGR+G+
Sbjct: 191 ADIDEGNRRVAAIMLEPLQGEGGVRPGEIEYFLRLRKICDENNILLVFDEVQVGVGRSGK 250

Query: 235 LYAYMHYGVTPDLLSTAKALGGGFPIGALLASERCASVMTVGTHGTTYGGNPLACAVAGE 294
           L+ Y + GV PD+L++AK L GG PIGA++  E C +V+T GTH +T+GGNPLACA A  
Sbjct: 251 LWGYENLGVEPDVLTSAKGLAGGIPIGAMMCKEFC-NVLTPGTHASTFGGNPLACAAALT 309

Query: 295 VFATINTREVLNGVKQRHQWFCERLNAINAR-YGLFKEIRGLGLLIGCVLKDEYAGKAKA 353
           V  TI    +L  V+ R +    RL AI  +   LF ++RG GL+ G  + +E +  +  
Sbjct: 310 VLKTIEEENILQNVQARGEQLRTRLRAIAQKDPTLFTDVRGWGLINGLEINEEMSITSID 369

Query: 354 ISNQAAEEGLMILIAGANVVRFAPALIISEDEVNSGLDRFELACKRFLA 402
           I   A EEGL++  AG  V+RF P LI++E+E+N   D  E A  +  A
Sbjct: 370 IVKAAMEEGLLLAPAGPKVLRFVPPLIVTEEEINQAADLLETAINKVCA 418


Lambda     K      H
   0.321    0.137    0.412 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 459
Number of extensions: 19
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 406
Length of database: 422
Length adjustment: 31
Effective length of query: 375
Effective length of database: 391
Effective search space:   146625
Effective search space used:   146625
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory