Align Probable acetolactate synthase large subunit; AHAS; EC 2.2.1.6; Acetohydroxy-acid synthase large subunit; ALS (uncharacterized)
to candidate WP_009543700.1 CCE_RS19930 acetolactate synthase large subunit
Query= curated2:O08353 (599 letters) >NCBI__GCF_000017845.1:WP_009543700.1 Length = 550 Score = 347 bits (890), Expect = e-100 Identities = 206/554 (37%), Positives = 298/554 (53%), Gaps = 29/554 (5%) Query: 1 MNGAEAMIKALEAEKVEILFGYPGGALLPFYDALHHSDLIHLLTRHEQAAAHAADGYARA 60 MN AE ++K LE E VE +FG PG L +AL S + + TRHEQ AA AD Y R Sbjct: 4 MNTAELLVKCLENEGVEYIFGLPGEENLHILEALKDSSIQFITTRHEQGAAFMADVYGRL 63 Query: 61 SGKVGVCIGTSGPGATNLVTGVATAHSDSSPMVALTGQVPTKLIGNDAFQEIDALGLFMP 120 +GK GVC+ T GPGATNL+TGVA A+ D +P+VA+TGQV T + ++ Q +D + +F P Sbjct: 64 TGKAGVCLSTLGPGATNLMTGVADANLDGAPLVAITGQVGTDRMHIESHQYLDLVAMFAP 123 Query: 121 IVKHNFQIQKTCQIPEIFRSAFEIAQTGRPGPVHIDLPKDVQELELDIDKHPIPSKVKLI 180 + K N QI + PE+ R AF++AQ+ +PG VHIDLP+++ L P+ Sbjct: 124 VTKWNKQIVRPSITPEVTRKAFKLAQSEKPGAVHIDLPENIAAL-------PVEGWPLTR 176 Query: 181 GYNPTTIGHPRQIKKAIKLIASAKRPIILAGGGVLLSGANEELLKLVELLNIPVCTTLMG 240 T R + A I+ AK P+IL G G + + A+E L + LNIPV T MG Sbjct: 177 DSQEKTYASYRSLNAAAMAISKAKNPLILVGNGTIRAHASEALTEFATTLNIPVANTFMG 236 Query: 241 KGCISENHPLALGMVGMHGTKPANYCLSESDVLISIGCRFSDRITGDIKSF--ATNAKII 298 KG + HPL+L VG+ +SD++I++G D I K + II Sbjct: 237 KGAVPFTHPLSLWTVGLQQRDLITCAFEQSDLVIAVG---YDLIEYSPKKWNPEGTTPII 293 Query: 299 HIDIDPAEIGKNVNVDVPIVGDAKLILKEVIKQLDYIINKDSKENNDKENISQWIENVNS 358 HI + PAEI + V +VGD L +++K+ D + K + + + Sbjct: 294 HIGMTPAEIDSSYIPLVEVVGDISDSLMDILKRAD----RQGKSTSVAAGLR------SD 343 Query: 359 LKKSSIPVMDYDDIPIKPQKIVKELMAVIDDLNINKNTIITTDVGQNQMWMAHYFKTQTP 418 L + + P+KPQKI+ +L V + I+ +DVG ++MWMA ++ TP Sbjct: 344 LVREYEKYAHDEGFPVKPQKIIYDLRQV-----MGPEDIVISDVGAHKMWMARHYHCDTP 398 Query: 419 RSFLSSGGLGTMGFGFPSAIGAKVAKPDSKVICITGDGGFMMNCQELGTIAEYNIPVVIC 478 + L S G MG P AI AK+ PD KV+ +TGDGGFMMNCQEL T P V Sbjct: 399 NTCLISNGFAAMGIAIPGAIAAKLVAPDKKVVAVTGDGGFMMNCQELETALRAGTPFVTL 458 Query: 479 IFDNRTLGMVYQWQNLFYGKRQCSVNFGGAPDFIKLAESYGIKARRIESPNEINEALKEA 538 IF++ G++ +W+ + + + F PDF+K AES G+K R+ES +++ LK A Sbjct: 459 IFNDNGYGLI-EWKQINQFGQSSFIKFTN-PDFVKFAESMGLKGYRVESADDLVPTLKTA 516 Query: 539 INCDEPYLLDFAID 552 + P ++D +D Sbjct: 517 LEQGVPAVIDCPVD 530 Lambda K H 0.319 0.137 0.405 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 763 Number of extensions: 27 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 599 Length of database: 550 Length adjustment: 36 Effective length of query: 563 Effective length of database: 514 Effective search space: 289382 Effective search space used: 289382 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory