GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Nostoc punctiforme PCC 73102 ATCC 29133; PCC 73102

Align Acetylornithine aminotransferase; ACOAT; EC 2.6.1.11 (uncharacterized)
to candidate WP_012408608.1 NPUN_RS09825 acetyl ornithine aminotransferase family protein

Query= curated2:Q8TUZ5
         (389 letters)



>NCBI__GCF_000020025.1:WP_012408608.1
          Length = 439

 Score =  291 bits (745), Expect = 2e-83
 Identities = 171/401 (42%), Positives = 243/401 (60%), Gaps = 31/401 (7%)

Query: 14  TYSR-FPVTLVPGEGARVWDDEGNEYIDLVAGIAVNVLGHCHPAVVEAVKEQVERLIHCS 72
           +Y+R +P+ +  G+G  V D +GN ++D+ AGIAV   GH HP VV+A++EQ ERL+H S
Sbjct: 39  SYTRDYPLVVSRGQGCMVEDVDGNVFLDMTAGIAVTATGHAHPEVVKAIQEQSERLLHMS 98

Query: 73  NL-YYNEPQAEAARLLAEAAPKDLN--------KVFFCNSGTESVECAIKLARKFTGCTK 123
              +Y EP  E A  LA  AP            KVFF NSG ES E A+KLA+ +T  + 
Sbjct: 99  GTDFYYEPMVELAEQLAIRAPFPQPQGNSAFPAKVFFTNSGAESNEGALKLAKYYTKRSL 158

Query: 124 FIAFEGGFHGRTMGALSATW-KPEFREPFEPLVPEFEHVPYG---DVNAVEKAI------ 173
            +AF G FHGRT GA+S T  K   R  F PLVP   H+PYG    ++ +E+ +      
Sbjct: 159 IVAFLGAFHGRTYGAMSLTGSKAVQRANFGPLVPGVTHIPYGTHASLDYLEQQLFGTILP 218

Query: 174 DDDTAAVIVEPVQGEAGVRIPPEGFLRELRELCDEHGLLLIVDEVQSGMGRTGQFFAFEH 233
             + AA++VEP+QGE G  +P +GFL+ +R++CD HG+L++VDEVQ+GMGRTG+ FA EH
Sbjct: 219 PQEVAAIVVEPIQGEGGYIVPEDGFLKRIRDICDRHGILMVVDEVQAGMGRTGRLFAIEH 278

Query: 234 EDVLPDIVCLAKGLGGGVPVGATIAREEVAEAFEPGDHGSTFGGNPLACAAVCAAVSTVL 293
             V+PDI+  AKG+  G+P+GA +A+ E+   + PG H +TFGGNP+ACAA  A +  +L
Sbjct: 279 WGVMPDIITTAKGIASGLPLGAILAKPELM-TWPPGSHATTFGGNPVACAAGIATL-RLL 336

Query: 294 EENLPEAAERKGKLAMRILSEAEDVVEEV---RGRGLMMGVEVGDDERAKD------VAR 344
           E  L   A + G+L    LSE       V   RG+GLM+ V++ D++   D      + +
Sbjct: 337 ESGLMANATQMGELLQASLSELHQRFPRVSPPRGKGLMVAVDLLDEQGNLDRELRDRIIQ 396

Query: 345 EMLDRGALVNVTSGDVIRLVPPLVIGEDELEKALAELADAL 385
           E   RG L+       IR  PPLVI  D+++ AL  +++ L
Sbjct: 397 EAFLRGLLLLGCGKAAIRFCPPLVIDSDQIQIALQIISNIL 437


Lambda     K      H
   0.318    0.137    0.405 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 446
Number of extensions: 30
Number of successful extensions: 7
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 389
Length of database: 439
Length adjustment: 31
Effective length of query: 358
Effective length of database: 408
Effective search space:   146064
Effective search space used:   146064
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory