GapMind for Amino acid biosynthesis

 

Alignments for a candidate for tyrB in Acidithiobacillus ferrooxidans ATCC 23270

Align Aspartate/prephenate aminotransferase; AspAT / PAT; EC 2.6.1.1; EC 2.6.1.79 (characterized)
to candidate WP_012536913.1 AFE_RS09345 pyridoxal phosphate-dependent aminotransferase

Query= SwissProt::Q82WA8
         (397 letters)



>NCBI__GCF_000021485.1:WP_012536913.1
          Length = 393

 Score =  475 bits (1223), Expect = e-139
 Identities = 242/397 (60%), Positives = 299/397 (75%), Gaps = 7/397 (1%)

Query: 1   MKLSQRVQAIKPSPTLAVTAKAARLKAEGKNIIGLGAGEPDFDTPLHIKDAAITAIRNGF 60
           ++LS+RV A++PSPTLAVTA+A +L+ EGK+I+ LGAGEPDFDTP +IK+AAI AIR GF
Sbjct: 3   IRLSRRVNAVRPSPTLAVTARAQQLRREGKDIVSLGAGEPDFDTPEYIKEAAIAAIRQGF 62

Query: 61  TKYTAVGGTASLKQAIISKFKRENSLEFMPGEILVSSGGKQSFFNLVLATIDPGDEVIIP 120
           TKYTAVGGT  LK AII KF  +N L + P EILVS GGKQSFFNL  A +D GDEVIIP
Sbjct: 63  TKYTAVGGTPELKAAIIGKFAHDNHLSYRPDEILVSVGGKQSFFNLCQALLDAGDEVIIP 122

Query: 121 APYWVSYPDIVLIAEGKPVFIDTGIEEKFKISPDQLEKAITPRTRMFVVNSPSNPSGSVY 180
           APYWVSYPDIVL+AE +PV IDTG  ++FKISP+QLE+AITP TR+ V+NSPSNPSG  Y
Sbjct: 123 APYWVSYPDIVLLAEARPVIIDTGANQRFKISPEQLEEAITPNTRLLVINSPSNPSGMTY 182

Query: 181 SLEELQALGAVLRKYPDILIATDDMYEHILLSGDGFVNILNACPDLKARTVVLNGVSKAY 240
           S  EL+ALG VLR+YP ILIA+DDMYE I    + FVNI NACPDL  R +V+NGVSKAY
Sbjct: 183 SRPELEALGEVLRRYPHILIASDDMYEKIRFHDEEFVNIANACPDLAPRCIVMNGVSKAY 242

Query: 241 AMTGWRIGYCGGPAAIITAMENIQSQSTSNPNSIAQVAAEAALNGDQSCMVPMIEAFRER 300
           AMTGWRIGYC GP  +ITAM  +QSQSTSNP SIAQVAA+AAL G  S +  M+ AF+ R
Sbjct: 243 AMTGWRIGYCAGPKTLITAMNTVQSQSTSNPTSIAQVAAQAALEGGDSAIHEMVLAFKRR 302

Query: 301 NQFLTNALNSIAGIHCLLSEGAFYAFVDVRQAISRLNTQQILQNSSDIAFCNYVLEKAEV 360
           + ++ N L  + G+  + S+G FY+F   R+ ++    +       D+A    +L  A V
Sbjct: 303 HTYVYNRLKVLPGVAAMPSDGTFYSFPGFREVMAAKGLR------DDLALAEALL-GAGV 355

Query: 361 AAVPGSAFGCEGYMRLSFATSMDNLQEAVKRIASLLS 397
           A VPGSAFG  G++RLSFATS  NL+ A+ RI++ ++
Sbjct: 356 AVVPGSAFGTPGHIRLSFATSDKNLEMALDRISAFVN 392


Lambda     K      H
   0.318    0.133    0.380 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 461
Number of extensions: 16
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 397
Length of database: 393
Length adjustment: 31
Effective length of query: 366
Effective length of database: 362
Effective search space:   132492
Effective search space used:   132492
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory