GapMind for Amino acid biosynthesis

 

Alignments for a candidate for DAPtransferase in Rhodomicrobium vannielii ATCC 17100

Align LL-diaminopimelate aminotransferase; DAP-AT; DAP-aminotransferase; LL-DAP-aminotransferase; EC 2.6.1.83 (characterized)
to candidate WP_013420784.1 RVAN_RS16195 LL-diaminopimelate aminotransferase

Query= SwissProt::Q2RK33
         (390 letters)



>NCBI__GCF_000166055.1:WP_013420784.1
          Length = 408

 Score =  350 bits (897), Expect = e-101
 Identities = 167/391 (42%), Positives = 250/391 (63%), Gaps = 3/391 (0%)

Query: 2   QEARRIRELPPYLFARIEKKIAEARERGVDIISLGIGDPDMPTPSHVIDKLVAEAHNPEN 61
           +E  RI+ LPPY+F ++ K  A AR RG DII LG+G+PD+PTP H+ +KL+     P  
Sbjct: 3   EEFHRIKRLPPYVFEQVNKLKAAARARGEDIIDLGMGNPDLPTPDHITEKLIETVGKPRT 62

Query: 62  HRYPTSEGLLAFRQAVADWYQRLYGVDLDPRREVVTLIGSKEGIAHISLCYVDPGDINLV 121
           +RY  S G+   R+A A +Y R +GV L+P  +VV  +GSKEG A+++     PGD+ LV
Sbjct: 63  NRYSASRGIPGLRRAQAGYYDRRFGVKLNPDTQVVATLGSKEGFANMAQAITAPGDLVLV 122

Query: 122 PDPGYPVYNIGTLLAGGESYFMPLTAANGFLPDLGAIPSDVARRAKLMFINYPNNPTGAV 181
           P P YP++  G +++GG    +P +  + FL  +         +   + I+YP+NPT  +
Sbjct: 123 PSPTYPIHEFGFIISGGTIRHVPASVDDTFLSAVDKAVKHSVPKPLALIISYPSNPTALM 182

Query: 182 ADLKFFQEVVEFARSYDLIVCHDAAYSEITYDGYRAPSFLQAPGAKEVGIEFNSVSKPYN 241
           A L F++EV+++A+ +DLIV  D AY+EI +D    PS LQ PGA +V +EF S+SK Y+
Sbjct: 183 ASLDFYKEVIDYAKKHDLIVLSDVAYAEIYFDDNPPPSILQVPGAFDVAVEFTSLSKTYS 242

Query: 242 MTGWRLGWACGRADVIEALARIKSNIDSGAFQAVQYAGIAALTGPQEGLAEVRRVYQERR 301
           M GWR+G+  G   +  ALAR+KS +D GAF  +Q A  AAL GPQ+ + E+R++Y+ RR
Sbjct: 243 MPGWRMGFCVGNERLCAALARVKSYLDYGAFTPIQVAATAALNGPQDCVEEMRQIYKRRR 302

Query: 302 DIIVEGFNSLGWHLEKPKATFYVWAPVPRGYT---SASFAEMVLEKAGVIITPGNGYGNY 358
           D +VE F   GW +  P  T + WAP+P G+    S  F++++LEKAGV ++PG G+G Y
Sbjct: 303 DCLVETFERAGWPIPAPGGTMFAWAPLPPGWEKVGSLEFSKLLLEKAGVAVSPGLGFGEY 362

Query: 359 GEGYFRIALTISKERMQEAIERLRRVLGKVE 389
           GEG+ RIAL  ++ R+++A   +++ L   E
Sbjct: 363 GEGFVRIALVENEHRIRQAARAVKKFLSSGE 393


Lambda     K      H
   0.320    0.139    0.421 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 467
Number of extensions: 20
Number of successful extensions: 2
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 390
Length of database: 408
Length adjustment: 31
Effective length of query: 359
Effective length of database: 377
Effective search space:   135343
Effective search space used:   135343
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory