GapMind for Amino acid biosynthesis

 

Alignments for a candidate for homK in Calditerrivibrio nitroreducens DSM 19672

Align 2,3-bisphosphoglycerate-independent phosphoglycerate mutase; Short=BPG-independent PGAM; Short=Phosphoglyceromutase; Short=aPGAM; EC 5.4.2.12 (characterized, see rationale)
to candidate WP_013450992.1 CALNI_RS04340 cofactor-independent phosphoglycerate mutase

Query= uniprot:Q8PX04
         (397 letters)



>NCBI__GCF_000183405.1:WP_013450992.1
          Length = 388

 Score =  340 bits (871), Expect = 5e-98
 Identities = 177/363 (48%), Positives = 241/363 (66%), Gaps = 14/363 (3%)

Query: 1   MKYAILIGDGMADYPIEKLGNRTILQAARTPAMDSIAARGRAGLAKTVPDSFPPGSDVAN 60
           MKY +L+ DGM+DY I +LGN+TIL+ A T   D IA  G  G  KT PD   PGSD+ N
Sbjct: 1   MKYFVLLCDGMSDYEIPELGNKTILEFANTSNFDLIAKDGCCGFIKTTPDGMYPGSDICN 60

Query: 61  MSILGYDPATYYSGRAPLEAASMGVALAADDVAFRCNLITTEHG--MIKDYSAGHISSDE 118
           +SI GY+PA  Y+GR+P+EAAS+GV L  +D AFRCNL+T      +++D++A HI +D 
Sbjct: 61  LSIFGYNPAEVYTGRSPIEAASIGVELGENDFAFRCNLVTLSDDGEVMEDFTAHHIDNDT 120

Query: 119 AEILIDTLDYELSTENIRFYPGISYRHLIVAGNNLGAETECTPPHDITGEKIDKYLPRGK 178
           A  +I  L  E   ++I FY G+ YR+L+V   N     + TPPHDI G++ID YLP+G 
Sbjct: 121 ARGIIYKLQEEFKDDSIEFYAGVGYRNLMVI-RNADFRLKTTPPHDIIGKEIDDYLPKG- 178

Query: 179 DGEFFSELIEASKVVLELHPVNLKRVEEGKNPANSIWVWGQGYAPKFTAFMKLYGKKGAV 238
                    E + ++L +     + V+  K+ AN+IW+WG+G  P   +F  +YG  GAV
Sbjct: 179 ---------EGTDIILNIMKRGAEVVKSVKSSANAIWLWGEGKKPSLKSFKSVYGLDGAV 229

Query: 239 ISAVDLLKGIGIYAGLDVIEVHGATGYLDTNYEGKVRAAIEALKTRDLVFVHVEAPDEAG 298
           ISAVDL++GIG  AG+ VI+V GATG++DTNYEGK + AIEALK  D VFVHVEAPDE+G
Sbjct: 230 ISAVDLVRGIGKLAGMKVIDVPGATGFIDTNYEGKAQYAIEALKECDYVFVHVEAPDESG 289

Query: 299 HEGSIEKKLKAVEDFDSRIVAPILEYAENSDEPFTILVLPDHPTPISVKTHTRDPIPFAI 358
           H G I+ K+K+VED +SR++ PI+     S   + IL+ PDHPTPIS++TH  + +P  I
Sbjct: 290 HMGRIDLKVKSVEDINSRML-PIIMEGLKSFGDYRILITPDHPTPISLRTHAAELVPAII 348

Query: 359 YRT 361
             T
Sbjct: 349 AGT 351


Lambda     K      H
   0.316    0.136    0.393 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 500
Number of extensions: 18
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 397
Length of database: 388
Length adjustment: 31
Effective length of query: 366
Effective length of database: 357
Effective search space:   130662
Effective search space used:   130662
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory