GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD'B in Trichormus variabilis ATCC 29413

Align Succinylornithine transaminase (EC 2.6.1.81) (characterized)
to candidate WP_011320429.1 AVA_RS18905 aspartate aminotransferase family protein

Query= reanno::pseudo1_N1B4:Pf1N1B4_3440
         (406 letters)



>NCBI__GCF_000204075.1:WP_011320429.1
          Length = 427

 Score =  345 bits (886), Expect = 1e-99
 Identities = 185/399 (46%), Positives = 247/399 (61%), Gaps = 8/399 (2%)

Query: 13  FDQVMVPNYAPAAFIPVRGAGSRVWDQSGRELIDFAGGIAVNVLGHAHPALVAALTEQAN 72
           FD  ++  Y        RGAG RVWD  GRE +DF  GIA   LGHAHPA+V A+T Q  
Sbjct: 29  FDASVMSTYGRFPLALERGAGCRVWDTQGREYLDFVAGIATCTLGHAHPAMVEAVTRQIQ 88

Query: 73  KLWHVSNVFTNEPALRLAHKLVDATFAERVFFCNSGAEANEAAFKLARRVAHDRFGTEKY 132
           KL HVSN++       LA  ++  + A+RVFFCNSGAEANEAA KLAR+ AH     EK 
Sbjct: 89  KLHHVSNLYYIPEQGELAQWIIQHSCADRVFFCNSGAEANEAAIKLARKYAHTVLDIEKP 148

Query: 133 EIVAALNSFHGRTLFTVNVGGQSKYSDGFGPKITGITHVPYNDLAALKAAVSD------K 186
            I+ A  SFHGRTL T+   GQ+KY   F P + G  +V YND++A++AA+S+      +
Sbjct: 149 IILTANASFHGRTLATITATGQAKYQKYFDPLVPGFHYVNYNDISAVEAAISELDEGDYR 208

Query: 187 TCAVVLEPIQGEGGVLPAELSYLQGARELCDAHNALLVFDEVQTGMGRSGKLFAYQHYGV 246
             A+++EP+QGEGGV P ++ Y Q  R++CD    LL+FDEVQ GMGRSGKL+ Y++ GV
Sbjct: 209 VAAILIEPLQGEGGVRPGDVEYFQKLRQICDDTGILLMFDEVQVGMGRSGKLWGYEYLGV 268

Query: 247 TPDILTSAKSLGGGFPIAAMLTTEDLAKHLVVGTHGTTYGGNPLACAVAEAVIDVINTPE 306
            PDI TSAK LGGG PI AM+ ++        G H +T+GGNP AC VA AV   +    
Sbjct: 269 EPDIFTSAKGLGGGIPIGAMM-SKKFCDVFQPGEHASTFGGNPFACGVALAVCQTLEREN 327

Query: 307 VLNGVNAKHDKFKTRLEQIGEKY-GLFTEVRGLGLLLGCVLSDAWKGKAKDIFNAAEREG 365
           +L  V  + ++ +  L  +  KY    TEVRG GL+ G  L+   +  A D+  AA  EG
Sbjct: 328 ILQNVEDRGEQLRAGLRALAAKYPHHLTEVRGWGLINGLELAADIQLTAADVVKAAINEG 387

Query: 366 LMILQAGPDVIRFAPSLVVEDADIDAGLDRFERAAAKLT 404
           L+++ AGP V+RF P L+V +A+I+  L   E+A A +T
Sbjct: 388 LLLVPAGPKVVRFVPPLIVTEAEINTALKLLEKALATVT 426


Lambda     K      H
   0.320    0.136    0.400 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 446
Number of extensions: 12
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 406
Length of database: 427
Length adjustment: 31
Effective length of query: 375
Effective length of database: 396
Effective search space:   148500
Effective search space used:   148500
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory