GapMind for Amino acid biosynthesis

 

Alignments for a candidate for tyrB in Methylomonas methanica MC09

Align Aromatic-amino-acid transaminase (EC 2.6.1.57) (characterized)
to candidate WP_013818546.1 METME_RS09455 histidinol-phosphate transaminase

Query= reanno::BFirm:BPHYT_RS14905
         (370 letters)



>NCBI__GCF_000214665.1:WP_013818546.1
          Length = 367

 Score =  360 bits (923), Expect = e-104
 Identities = 183/360 (50%), Positives = 252/360 (70%), Gaps = 9/360 (2%)

Query: 10  VRAIAPYIAGKPISEVAREFGLDEATIVKLASNENPLGMPESAQRAMAQAASELGRYPDA 69
           V+ + PY+ GKP+ E+ RE GL E  ++KLASNENPLG       A+     EL RYPD 
Sbjct: 12  VQQLVPYVPGKPVEELQRELGLSE--VIKLASNENPLGTGAKVTAAIQATLPELTRYPDG 69

Query: 70  NAFELKAALSERYGVPADWVTLGNGSNDILEIAAHAFVEKGQSIVYAQYSFAVYALATQG 129
           + F LK ALS+++G+  + +TLGNGS++ILE+    FV     +V++Q++FA+Y + TQ 
Sbjct: 70  SGFSLKTALSQKWGIAPEQITLGNGSSEILELVMRTFVAPEHDVVFSQHAFALYPILTQA 129

Query: 130 LGARAIVVPAVKYGHDLDAMLAAVSDDTRLIFVANPNNPTGTFIEGPKLEAFLDKVPRHV 189
           +GA+A VVPA ++GHDL AMLAAV++ TR++F+ANPNNPTGT +    +E F+  +P HV
Sbjct: 130 VGAQARVVPAREFGHDLAAMLAAVTEKTRVVFIANPNNPTGTLLGPQDVENFIAALPVHV 189

Query: 190 VVVLDEAYTEYLPQEKRYDSIAWVRRYPNLLVSRTFSKAFGLAGLRVGFAIAQPELTDLL 249
           + VLDEAY E++    R +S+ W +RYPNL+++RTFSKA+GLAG+R+G+ I+  ++ DLL
Sbjct: 190 LCVLDEAYYEFVDPAVRTESLHWPQRYPNLIITRTFSKAYGLAGMRIGYGISSVDVADLL 249

Query: 250 NRVRQPFNVNTLAQAAAIAALNDKAFLEKSAALNAQGYRRLTEAFDKLGLEYVPSDGNFV 309
           NRVRQPFN N LA AAA AAL D A+LE++ A+N  G  +LT+AF  LGL ++PS GNFV
Sbjct: 250 NRVRQPFNSNMLALAAAEAALGDAAYLEETLAVNNAGMLQLTKAFQALGLAWIPSSGNFV 309

Query: 310 LVRVGNDDAAGNRVNL--ELLKQGVIVRPVGNYGLPQWLRITIGLPEENEAFIAALERTL 367
            V     D   N + +   LL +GVIVRPV NY +P  LR++IG   EN+ FIAAL   L
Sbjct: 310 SV-----DLKQNALPIYEALLSKGVIVRPVANYEMPSHLRVSIGTERENQLFIAALREVL 364


Lambda     K      H
   0.318    0.135    0.385 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 408
Number of extensions: 16
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 370
Length of database: 367
Length adjustment: 30
Effective length of query: 340
Effective length of database: 337
Effective search space:   114580
Effective search space used:   114580
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 49 (23.5 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory