GapMind for Amino acid biosynthesis

 

Alignments for a candidate for lysN in Thauera aminoaromatica S2

Align 2-aminoadipate transaminase; 2-aminoadipate aminotransferase; L-2AA aminotransferase; EC 2.6.1.39 (characterized)
to candidate WP_004298659.1 C665_RS01920 aspartate aminotransferase family protein

Query= SwissProt::Q88FI7
         (416 letters)



>NCBI__GCF_000310185.1:WP_004298659.1
          Length = 391

 Score =  171 bits (434), Expect = 3e-47
 Identities = 131/392 (33%), Positives = 188/392 (47%), Gaps = 47/392 (11%)

Query: 15  PITLSHGRNAEVWDTDGKRYIDFVGGIGVLNLGHCNPAVVEAIQAQATRLTHYAFNAAPH 74
           P+  +HG    ++D  GKRY+D + GI V  LG+ +P +V+AI  QA R+ H +     +
Sbjct: 12  PVAFTHGEGVWLYDETGKRYLDALSGIAVNTLGYKHPRLVKAIADQAERVLHTS-----N 66

Query: 75  GPYLALMEQLSQFVPVSYPLAGM----LTNSGAEAAENALKVARGATGKRAI-----IAF 125
              + L EQLS  +  +   AGM      NSG EA E A+K+AR     + I     I  
Sbjct: 67  LYRIPLQEQLSDRIAEA---AGMDEVFFCNSGCEANEAAIKLARMYGHNKGIELPHIIVM 123

Query: 126 DGGFHGRTLATLNLNGKVAPYKQRVGELPGPVYHLPYPSADTGVTCEQALKAMDRLFSVE 185
           +  FHGRT+ATL+  G     K + G  P     +  P  D           ++ +  + 
Sbjct: 124 ENAFHGRTMATLSATGN---RKAQAGFEPLVQGFIRVPYKD-----------IEAIRKIA 169

Query: 186 LAVEDVAAFIFEPVQGEGGFLALDPAFAQALRRFCDERGILIIIDEIQSGFGRTGQRFAF 245
                V A + E +QGEGG    D AF + LR  CD+RG L+I DE+Q G GRTG+ F +
Sbjct: 170 EHNHTVVAVMLEMIQGEGGVNVADEAFQRDLRALCDDRGWLMICDEVQCGMGRTGKWFGW 229

Query: 246 PRLGIEPDLLLLAKSIAGGMPLGAVVGRKELMAALPKGGLGGTYSGNPISCAAALASLAQ 305
              G  PD++ LAK +A G+P+GA V           G  G T+ GNP++CAA LA+   
Sbjct: 230 QHAGTRPDVMTLAKGLASGVPIGACVTSGLAKGLFGPGNHGSTFGGNPLACAAGLATFDA 289

Query: 306 MTDENLATWGERQEQAIVSRYERWKASGLSPYIG--RLTGVGAMRGIEFANADGSPAPAQ 363
           + ++ L         A+ +   +  A  L+   G   + G G M GIE     G      
Sbjct: 290 IVEDELMD----NAVAVGAAIRKGMAEALAGEAGVVDIRGRGLMIGIELDRPCG------ 339

Query: 364 LAKVMEAARARGLLLMPSGKARHIIRLLAPLT 395
              +M  A   GLLL  S  +  ++RLL  LT
Sbjct: 340 --VLMARAAENGLLL--SVTSERVVRLLPALT 367


Lambda     K      H
   0.320    0.137    0.402 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 400
Number of extensions: 19
Number of successful extensions: 4
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 416
Length of database: 391
Length adjustment: 31
Effective length of query: 385
Effective length of database: 360
Effective search space:   138600
Effective search space used:   138600
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory