GapMind for Amino acid biosynthesis

 

Alignments for a candidate for argD in Thauera aminoaromatica S2

Align acetylornithine transaminase (EC 2.6.1.11); 4-aminobutyrate-2-oxoglutarate transaminase (EC 2.6.1.19) (characterized)
to candidate WP_004298659.1 C665_RS01920 aspartate aminotransferase family protein

Query= BRENDA::P73133
         (429 letters)



>NCBI__GCF_000310185.1:WP_004298659.1
          Length = 391

 Score =  337 bits (864), Expect = 4e-97
 Identities = 186/394 (47%), Positives = 247/394 (62%), Gaps = 12/394 (3%)

Query: 33  TYVMNTYGRFPIAIARGQGSTLWDTEGKSYLDFVAGIATCTLGHAHPALVRAVSDQIQKL 92
           ++VMNTY R P+A   G+G  L+D  GK YLD ++GIA  TLG+ HP LV+A++DQ +++
Sbjct: 2   SHVMNTYARLPVAFTHGEGVWLYDETGKRYLDALSGIAVNTLGYKHPRLVKAIADQAERV 61

Query: 93  HHVSNLYYIPEQGELAKWIVEHSCADRVFFCNSGAEANEAAIKLVRKYAHTVLDFLEQPV 152
            H SNLY IP Q +L+  I E +  D VFFCNSG EANEAAIKL R Y H     +E P 
Sbjct: 62  LHTSNLYRIPLQEQLSDRIAEAAGMDEVFFCNSGCEANEAAIKLARMYGHN--KGIELPH 119

Query: 153 ILTAKASFHGRTLATITATGQPKYQQYFDPLVPGFDYVPYNDIRSLENKVADLDEGNSRV 212
           I+  + +FHGRT+AT++ATG  K Q  F+PLV GF  VPY DI ++  K+A   E N  V
Sbjct: 120 IIVMENAFHGRTMATLSATGNRKAQAGFEPLVQGFIRVPYKDIEAI-RKIA---EHNHTV 175

Query: 213 AAIFLEPLQGEGGVRPGDLAYFKRVREICDQNDILLVFDEVQVGVGRTGKLWGYEHLGVE 272
            A+ LE +QGEGGV   D A+ + +R +CD    L++ DEVQ G+GRTGK +G++H G  
Sbjct: 176 VAVMLEMIQGEGGVNVADEAFQRDLRALCDDRGWLMICDEVQCGMGRTGKWFGWQHAGTR 235

Query: 273 PDIFTSAKGLAGGVPIGAMMCKKFC-DVFEPGNHASTFGGNPLACAAGLAVLKTIEGDRL 331
           PD+ T AKGLA GVPIGA +       +F PGNH STFGGNPLACAAGLA    I  D L
Sbjct: 236 PDVMTLAKGLASGVPIGACVTSGLAKGLFGPGNHGSTFGGNPLACAAGLATFDAIVEDEL 295

Query: 332 LDNVQARGEQLRSGLAEIKNQYPTLFTEVRGWGLINGLEISAESSLTSVEIVKAAMEQGL 391
           +DN  A G  +R G+AE       +  ++RG GL+ G+E+     +    ++  A E GL
Sbjct: 296 MDNAVAVGAAIRKGMAEALAGEAGV-VDIRGRGLMIGIELDRPCGV----LMARAAENGL 350

Query: 392 LLAPAGPKVLRFVPPLVVTEAEIAQAVEILRQAI 425
           LL+    +V+R +P L  T A+    V +L   I
Sbjct: 351 LLSVTSERVVRLLPALTFTTADAQTLVSMLAPMI 384


Lambda     K      H
   0.320    0.137    0.405 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 445
Number of extensions: 22
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 429
Length of database: 391
Length adjustment: 31
Effective length of query: 398
Effective length of database: 360
Effective search space:   143280
Effective search space used:   143280
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory