GapMind for Amino acid biosynthesis

 

Alignments for a candidate for hom in Thioalkalivibrio thiocyanodenitrificans ARhD 1

Align homoserine dehydrogenase (EC 1.1.1.3); aspartate kinase (EC 2.7.2.4) (characterized)
to candidate WP_018231020.1 THITHI_RS0100065 aspartate kinase

Query= BRENDA::Q9WZ17
         (739 letters)



>NCBI__GCF_000378965.1:WP_018231020.1
          Length = 409

 Score =  330 bits (846), Expect = 9e-95
 Identities = 178/402 (44%), Positives = 265/402 (65%), Gaps = 3/402 (0%)

Query: 339 SVVVMKFGGAAISDVEKLEKVAEKIIKRKKSGVKPVVVLSAMGDTTDHLIELAKTIDENP 398
           +++V K+GG ++  VE+++ VAEK+++ ++ G   VVV+SAM   TD L+ LA+ I+  P
Sbjct: 2   ALIVQKYGGTSVGSVERIQHVAEKVLEHRRQGHDVVVVVSAMSGETDRLLGLAREINPRP 61

Query: 399 DPRELDLLLSTGEIQSVALMSIALRKRGYKAISFTGNQLKIITDKRYGSARIIDINTDII 458
             RELD+LLSTGE  ++AL+S+AL  RG  A S+TG Q+ I+TD  +  ARI DI+   +
Sbjct: 62  QGRELDVLLSTGEQVTIALLSMALEGRGCPARSYTGAQVHILTDSAHNKARIRDIDGARV 121

Query: 459 SRYLKQDFIPVVAGFQGITETGDITTLGRGGSDLTAIALAYSLGADLCELYKDVDGVYTA 518
            R L    + VVAGFQG+ E G+ITTLGRGGSD TA+ALA +L AD C++Y DVDGVYT 
Sbjct: 122 RRDLADGNVVVVAGFQGVDEHGNITTLGRGGSDTTAVALAAALKADECQIYTDVDGVYTT 181

Query: 519 DPRIVKDARVIKELSWEEMIELSRHGAQVLQARAAEFARKYGVKVLIKNAHKETRGTLI- 577
           DPR+V +AR ++ +++EEM+E++  G++VLQ RA EFA KY V + + ++ +E  GTLI 
Sbjct: 182 DPRVVPEARRLERITFEEMLEMASLGSKVLQIRAVEFAGKYNVPLRVLSSFREGPGTLIT 241

Query: 578 WEGTKVENPIVRAVTFEDGMAKVVLKDVPDKPGVAARIMRTLSQMGVNIDMIIQGMKSGE 637
           +E   +E  ++  + F    A++ +  VPD+PGVA RI+  +S   V +DMI+Q + + E
Sbjct: 242 FEEDGMEQALISGIAFNQNEAQLTILGVPDQPGVAHRILGPISDANVEVDMIVQNVGADE 301

Query: 638 YNTVAFIVPESQLGKLDIDL--LKTRSEAKEIIIEKGLAKVSIVGVNLTSTPEISATLFE 695
                F V  +   K    L  L     A++I  +  + K+S+VGV + S   I++ +FE
Sbjct: 302 TTDFTFTVHRNDYDKALAILQGLSGELAARKISGDPKIVKISLVGVGMRSHAGIASRMFE 361

Query: 696 TLANEGINIDMISASSSRISVIIDGKYVEDAVKAIHSRFELD 737
            LA EGINI MIS S  ++SV++D KY+E  V+A+H  FEL+
Sbjct: 362 ALAREGINIRMISTSEIKVSVVVDEKYLELGVRALHDAFELE 403


Lambda     K      H
   0.318    0.137    0.377 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 740
Number of extensions: 36
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 2
Number of HSP's successfully gapped: 1
Length of query: 739
Length of database: 409
Length adjustment: 36
Effective length of query: 703
Effective length of database: 373
Effective search space:   262219
Effective search space used:   262219
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 53 (25.0 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory