GapMind for Amino acid biosynthesis

 

Alignments for a candidate for dapX in Hippea alviniae EP5-r

Align Probable N-acetyl-LL-diaminopimelate aminotransferase; Putative aminotransferase A; EC 2.6.1.- (characterized)
to candidate WP_022670427.1 G415_RS0104595 pyridoxal phosphate-dependent aminotransferase

Query= SwissProt::P16524
         (393 letters)



>NCBI__GCF_000420385.1:WP_022670427.1
          Length = 400

 Score =  249 bits (635), Expect = 1e-70
 Identities = 153/393 (38%), Positives = 234/393 (59%), Gaps = 31/393 (7%)

Query: 5   LNPKAREIEISGIRKFSNLVAQHEDVISLTIGQPDFFTPHHVKAAAKKAIDENVTSYTPN 64
           ++ KA+E+  +G+           +VI+ + G+PDF TP ++K AA K+I +  T YT  
Sbjct: 21  ISAKAKELRAAGV-----------NVINFSAGEPDFDTPDNIKMAAVKSIADGFTKYTAA 69

Query: 65  AGYLELRQAVQLYMKKKADFNYDAESEIIITTGASQAIDAAFRTILSPGDEVIMPGPIYP 124
            G  ELR AV    K K    Y  E+ + I+ GA  A+      +L  GDEVI+  P + 
Sbjct: 70  GGINELRDAVVEKEKNKNGLEYKREN-VCISVGAKHALFNIAAVMLEEGDEVIIIAPYWV 128

Query: 125 GYEPIINLCGAKPVIVDTTS-HGFKLTARLIEDALTPNTKCVVLPYPSNPTGVTLSEEEL 183
            YE I++  G K VIV+TT  +GF  T   +E A+TP TK + +  P+NPTG T + ++L
Sbjct: 129 TYEAIVSYVGGKAVIVNTTEENGFVPTKEQLEKAITPKTKMIWVNNPTNPTGATYTVDDL 188

Query: 184 KSIAALLKGRNVFVLSDEIYSELTYD--RPHYSIAT---YLRDQTIVINGLSKSHSMTGW 238
           K I  L +  +++++SDEIY ++ +D  +P  S+AT   Y  ++T+V+NG+SK++SMTGW
Sbjct: 189 KFIVELAEKNDIWLVSDEIYEDIVFDGYKP-VSMATLSDYAYERTLVVNGVSKTYSMTGW 247

Query: 239 RIGFLFAPKDIAKHILKVHQYNVSCASSISQKAALEAVTNGFDDALIMREQYKKRLDYVY 298
           RIG+     ++   ++K+   + S  +SI+Q AALEA+T   D    MR Q++KR DY+ 
Sbjct: 248 RIGYTCGDAEVIGAMIKLQSQSTSNPTSIAQCAALEALTGDQDSVEKMRVQFEKRRDYIV 307

Query: 299 DRLVSM-GLDVVKPSGAFYIFPSIKSFG---------MTSFDFSMALLEDAGVALVPGSS 348
           D L S+ G+   KP GAFY+FP+I SF            S DF+  LLE   VA+VPG +
Sbjct: 308 DALNSIEGISCFKPKGAFYVFPNISSFFGKEYEGKKINGSMDFAELLLEHHHVAVVPGIA 367

Query: 349 FSTYGEGYVRLSFACSMDTLREGLDRLELFVLK 381
           F    + ++R+SFA S++ ++EG+ RL+ FV K
Sbjct: 368 FG--DDRFLRMSFATSLEDIQEGIKRLKEFVEK 398


Lambda     K      H
   0.319    0.135    0.388 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 370
Number of extensions: 21
Number of successful extensions: 7
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 393
Length of database: 400
Length adjustment: 31
Effective length of query: 362
Effective length of database: 369
Effective search space:   133578
Effective search space used:   133578
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory