GapMind for Amino acid biosynthesis

 

Alignments for a candidate for DAPtransferase in Thiomicrorhabdus chilensis DSM 12352

Align LL-diaminopimelate aminotransferase; DAP-AT; DAP-aminotransferase; LL-DAP-aminotransferase; EC 2.6.1.83 (characterized)
to candidate WP_028486579.1 B076_RS0106355 alanine transaminase

Query= SwissProt::Q2RK33
         (390 letters)



>NCBI__GCF_000483485.1:WP_028486579.1
          Length = 398

 Score =  352 bits (902), Expect = e-101
 Identities = 164/390 (42%), Positives = 253/390 (64%), Gaps = 3/390 (0%)

Query: 1   MQEARRIRELPPYLFARIEKKIAEARERGVDIISLGIGDPDMPTPSHVIDKLVAEAHNPE 60
           M+E +RI+ LPPY+F  + +  AEAR RG DII  G+G+PD  TP H++DKL+       
Sbjct: 2   MEEFQRIKRLPPYVFNIVGELKAEARRRGEDIIDFGMGNPDQDTPKHIVDKLIEVVQREG 61

Query: 61  NHRYPTSEGLLAFRQAVADWYQRLYGVDLDPRREVVTLIGSKEGIAHISLCYVDPGDINL 120
            HRY  S+G+   R+A+ +WY+  Y VDLD   E V  IGSKEG+AH++L  V+ GD  L
Sbjct: 62  THRYSVSQGIPRLRKAICNWYKSKYDVDLDADTEAVVTIGSKEGLAHLALATVEKGDTVL 121

Query: 121 VPDPGYPVYNIGTLLAGGESYFMPLTAANGFLPDLGAIPSDVARRAKLMFINYPNNPTGA 180
           VP+P YP++  G ++AG +   + +T    F  +L     +   + K++ +N+P NPT  
Sbjct: 122 VPNPAYPIHPYGFVIAGADIRHVRMTPDVDFFDELEKAIKESWPKPKMLVLNFPGNPTTQ 181

Query: 181 VADLKFFQEVVEFARSYDLIVCHDAAYSEITYDGYRAPSFLQAPGAKEVGIEFNSVSKPY 240
             DL+FF++V+  A+ +++ V HD AY++I +DGY+APS LQ  GAK++ +EF ++SK Y
Sbjct: 182 TVDLEFFEKVIAIAKEHNIWVIHDLAYADIVFDGYKAPSILQVEGAKDIAVEFYTLSKSY 241

Query: 241 NMTGWRLGWACGRADVIEALARIKSNIDSGAFQAVQYAGIAALTGPQEGLAEVRRVYQER 300
           NM GWR+G+  G   ++ AL R+KS +D G F  +Q A IAAL GPQ+ + E+  +Y+ R
Sbjct: 242 NMPGWRVGFMVGNPVLVNALKRMKSYLDYGTFTPIQVAAIAALEGPQDCVQEICDMYKSR 301

Query: 301 RDIIVEGFNSLGWHLEKPKATFYVWAPVPRGYT---SASFAEMVLEKAGVIITPGNGYGN 357
           RD++ +G N++GW +E PKAT +VWAP+P  Y    S  F++ +L +A V ++PG G+G+
Sbjct: 302 RDVLCQGLNAIGWKVEPPKATMFVWAPIPEEYKSMGSIEFSKKLLTEAKVAVSPGVGFGD 361

Query: 358 YGEGYFRIALTISKERMQEAIERLRRVLGK 387
           YG+ + R  L  ++ R ++AI  +R +  K
Sbjct: 362 YGDDHVRFGLIENEHRTRQAIRGIRDMFRK 391


Lambda     K      H
   0.320    0.139    0.421 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 461
Number of extensions: 24
Number of successful extensions: 1
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 390
Length of database: 398
Length adjustment: 31
Effective length of query: 359
Effective length of database: 367
Effective search space:   131753
Effective search space used:   131753
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory