GapMind for Amino acid biosynthesis

 

Alignments for a candidate for proB in Hydrogenovibrio marinus DSM 11271

Align δ1-pyrroline-5-carboxylate synthetase (EC 1.2.1.41; EC 2.7.2.11) (characterized)
to candidate WP_035629084.1 P166_RS0111270 glutamate-5-semialdehyde dehydrogenase

Query= metacyc::AT2G39800-MONOMER
         (717 letters)



>NCBI__GCF_000711315.1:WP_035629084.1
          Length = 419

 Score =  305 bits (781), Expect = 3e-87
 Identities = 165/403 (40%), Positives = 250/403 (62%), Gaps = 6/403 (1%)

Query: 302 ARESSRKLQALSSEDRKKILLDIADALEANVTTIKAENELDVASAQEAGLEESMVARLVM 361
           AR++SR+L   ++E + + LL IADAL A   T+KAEN+ D+ + +  GL+++M+ RL M
Sbjct: 16  ARKASRELAVATTEQKNRALLSIADALLAQAETLKAENKKDLEAGKAKGLDDAMLDRLTM 75

Query: 362 TPGKISSLAASVRKLADMEDPIGRVLKKTEVADGLVLEKTSSPLGVLLIVFESRPDALVQ 421
           T   I+ +A  +R++A ++DPIG +     +  G+ + K   PLGV+ I++ESRP+  + 
Sbjct: 76  TDKTIAGMAEGLRQIAGLKDPIGEIEHMNYLPSGIQVGKMRVPLGVVGIIYESRPNVTID 135

Query: 422 IASLAIRSGNGLLLKGGKEARRSNAILHKVITDAIPET---VGGKLIGLVTSREEIPDLL 478
            A+L ++SGN  +L+GG EA  SN  L   I  A+ E         +   T RE + +++
Sbjct: 136 AAALCLKSGNATVLRGGSEAYFSNHALAACIQQALKEAHLPEAAVQVVQTTDREAVGEMI 195

Query: 479 KLDDVIDLVIPRGSNKLVTQIKNTTKIPVLGHADGICHVYVDKACDTDMAKRIVSDAKLD 538
            + + ID++IPRG   LV +I    ++PV+ H DGICHVY+D   +TD A ++  +AK  
Sbjct: 196 AMPEYIDVIIPRGGKSLVERINQGARVPVIKHLDGICHVYIDDDANTDKAVKVAINAKTH 255

Query: 539 YPAACNAMETLLVHKDLEQNAVLNELIFALQSNGVTLYGGPRASKILNIPEA--RSFNHE 596
               CNAMETLLV +   Q  VL  L  A    GV L G  ++  I+ +  A    +  E
Sbjct: 256 RYGVCNAMETLLVAESRAQE-VLPILAKAYAEKGVELRGCEKSRAIVEMKAATDEDWATE 314

Query: 597 YCAKACTVEVVEDVYGAIDHIHRHGSAHTDCIVTEDHEVAELFLRQVDSAAVFHNASTRF 656
           Y A   +++VV DV  AIDHI ++ S HT+ I+TE+  ++  FL QVDS++V  NASTRF
Sbjct: 315 YLAPILSIKVVADVDEAIDHIAQYSSGHTESIITENITISRRFLAQVDSSSVMVNASTRF 374

Query: 657 SDGFRFGLGAEVGVSTGRIHARGPVGVEGLLTTRWIMRGKGQV 699
           +DGF +GLGAE+G+ST + HARGPVG+EGL + ++I+ G G +
Sbjct: 375 ADGFEYGLGAEIGISTDKFHARGPVGLEGLTSQKYIVLGDGHI 417


Lambda     K      H
   0.318    0.135    0.378 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 559
Number of extensions: 22
Number of successful extensions: 3
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 717
Length of database: 419
Length adjustment: 36
Effective length of query: 681
Effective length of database: 383
Effective search space:   260823
Effective search space used:   260823
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.7 bits)
S2: 52 (24.6 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory