Align 4-aminobutyrate aminotransferase GabT; 5-aminovalerate transaminase; GABA aminotransferase; GABA-AT; Gamma-amino-N-butyrate transaminase; GABA transaminase; Glutamate:succinic semialdehyde transaminase; L-AIBAT; EC 2.6.1.19; EC 2.6.1.48 (characterized)
to candidate WP_058931602.1 AU252_RS16125 4-aminobutyrate--2-oxoglutarate transaminase
Query= SwissProt::P22256 (426 letters) >NCBI__GCF_001484605.1:WP_058931602.1 Length = 456 Score = 330 bits (847), Expect = 4e-95 Identities = 177/422 (41%), Positives = 248/422 (58%), Gaps = 12/422 (2%) Query: 7 LMQRRSQAIPRGVGQIHPIFADRAENCRVWDVEGREYLDFAGGIAVLNTGHLHPKVVAAV 66 L +RR + GV P++ A+ + DV+G ++D GIAV + G P VV AV Sbjct: 30 LTERRKAVVAAGVASAVPVYVADADGGIIHDVDGNSFIDLGSGIAVTSVGASDPAVVGAV 89 Query: 67 EAQLKKLSHTCFQVLAYEPYLELCEIMNQKVPGDFAKKTLLVTTGSEAVENAVKIARAAT 126 + ++ +HTCF V YE Y+ L E +N+ PGD K+T+L +G+EAVENAVK+AR AT Sbjct: 90 KEAVEHFTHTCFMVTPYESYVALAEQLNRLTPGDHEKRTVLFNSGAEAVENAVKVARLAT 149 Query: 127 KRSGTIAFSGAYHGRTHYTLALTGKVNPYSAGMGLMPGHVYRALYPCPLH----GISEDD 182 R +AF AYHGRT+ T+ALT K PY G VYR P I+ + Sbjct: 150 GRDAVVAFDHAYHGRTNLTMALTAKAMPYKTNFGPFAPEVYRMPMSYPFREENPSITGAE 209 Query: 183 AIASIHRIFKNDAAPEDIAAIVIEPVQGEGGFYASSPAFMQRLRALCDEHGIMLIADEVQ 242 A + + + +AAI+IEP+QGEGGF + F+ L A +G++ IADEVQ Sbjct: 210 AAKRAITMIEKQIGGDQVAAIIIEPIQGEGGFIVPAEGFLPALAAWAKTNGVVFIADEVQ 269 Query: 243 SGAGRTGTLFAMEQMGVAPDLTTFAKSIAGGFPLAGVTGRAEVMDAVAPGGLGGTYAGNP 302 SG RTG FA+ V PD+ T AK IAGG PL+ +TGRA+++DAV PGGLGGTY GNP Sbjct: 270 SGFCRTGEWFAVNHEDVVPDIITMAKGIAGGMPLSAITGRADLLDAVHPGGLGGTYGGNP 329 Query: 303 IACVAALEVLKVFEQENLLQKANDLGQKLKDGLLAIAEKH------PEIGDVRGLGAMIA 356 +AC AAL + E+ NL +A + + L G L + IGD+RG GAM+A Sbjct: 330 VACAAALAAIGSMEEYNLAGRARHI-ESLATGRLQELQAELAGAGKSVIGDIRGRGAMLA 388 Query: 357 IELFEDGDHNKPDAKLTAEIVARARDKGLILLSCGPYYNVLRILVPLTIEDAQIRQGLEI 416 +EL + G +P+ +LT + A +G+I+L+CG Y NV+R+L PL I D + GL++ Sbjct: 389 VELVQAGS-KEPNPELTKAVAAACLKEGVIILTCGTYGNVIRLLPPLVITDDLLNDGLDV 447 Query: 417 IS 418 ++ Sbjct: 448 LA 449 Lambda K H 0.320 0.137 0.401 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 524 Number of extensions: 25 Number of successful extensions: 4 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 426 Length of database: 456 Length adjustment: 32 Effective length of query: 394 Effective length of database: 424 Effective search space: 167056 Effective search space used: 167056 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.4 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.8 bits) S2: 51 (24.3 bits)
This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory