GapMind for Amino acid biosynthesis

 

Alignments for a candidate for ptransferase in Nitratiruptor tergarcus DSM 16512

Align Aspartate/prephenate aminotransferase; AspAT / PAT; EC 2.6.1.1; EC 2.6.1.78 (characterized)
to candidate WP_084275812.1 B8779_RS06960 pyridoxal phosphate-dependent aminotransferase

Query= SwissProt::Q8KDS8
         (400 letters)



>NCBI__GCF_900176045.1:WP_084275812.1
          Length = 390

 Score =  371 bits (953), Expect = e-107
 Identities = 199/391 (50%), Positives = 265/391 (67%), Gaps = 12/391 (3%)

Query: 10  LSRRVLSMQESQTMKITGLAKKMQAEGKDVVSLSAGEPDFPTPENVCEAGIEAIRKGFTR 69
           L+RR+  + ES TM IT LA++++A GKDV+S SAGEPDF TP+ + +A I+AI +GFT+
Sbjct: 2   LARRIDQLSESLTMAITSLARELKANGKDVLSFSAGEPDFDTPQAIKDAAIKAINEGFTK 61

Query: 70  YTANSGIPELKKAIIRKLQRDNGLEYAEDEIIVSNGGKQALANTFLALCDEGDEVIVPAP 129
           YTA  GIPELK+AII KLQRDNGL Y  + IIVSNG KQ+L N    L DEGDEVI+P+P
Sbjct: 62  YTAVDGIPELKEAIIGKLQRDNGLSYKPEHIIVSNGAKQSLFNLTQVLIDEGDEVIIPSP 121

Query: 130 YWVSFPEMARLAEATPVIVETSIETGYKMTPEQLAAAITPKTRILVLNSPSNPSGAVYNE 189
           YWV++PE+ + A   PVI+ T+   G+K+TP+QL  AITPKT++L+L +PSNP+GAVY +
Sbjct: 122 YWVTYPELVKYAGGKPVIIPTNESNGFKITPKQLEDAITPKTKLLILTTPSNPTGAVYTK 181

Query: 190 AEVRALMQVIEGKEIFVLSDEMYDMICYGGVRPFSPARIPE-MKPWVIVSNGTSKSYSMT 248
            E+ AL +V+ G +IFV SDEMY+ + YGG +  S A I E M    I  NG SKS +MT
Sbjct: 182 EELEALAKVLAGTKIFVASDEMYEKLVYGGAKFTSAASINEDMFERTITINGLSKSAAMT 241

Query: 249 GWRIGYLAAPKW-IINACDKIQSQTTSNANSIAQKAAVAALDGD-QSIVEQRRAEFEKRR 306
           GWR GYLA+ +  ++ A  K+QSQ+TSN NSI QKAA+  LDG  ++ +E  R EFEKRR
Sbjct: 242 GWRFGYLASSQTELVKAMKKLQSQSTSNINSITQKAAIPGLDGTIENDIEMMRKEFEKRR 301

Query: 307 DFMFRELNTISGIECTLPEGAFYIFPSIKGLLGKTFGGKVMKDSTDVAEYLLTEHYVATV 366
           D     LN I GI    P+GAFY+F +           ++ KDS   A+ LL +  VA V
Sbjct: 302 DRAVALLNAIDGISVLSPDGAFYLFVN---------HSQIEKDSMLFAKKLLEQEGVAVV 352

Query: 367 PGDAFGAPENLRLSYAASIEELAEAVNRIRK 397
           PG  FG+    R S+A  +  + E + RI++
Sbjct: 353 PGIGFGSEGYFRFSFATDMTSIEEGIERIKR 383


Lambda     K      H
   0.316    0.132    0.376 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 428
Number of extensions: 19
Number of successful extensions: 6
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 1
Number of HSP's successfully gapped: 1
Length of query: 400
Length of database: 390
Length adjustment: 31
Effective length of query: 369
Effective length of database: 359
Effective search space:   132471
Effective search space used:   132471
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.3 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.6 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory