Align Acetolactate synthase large subunit; AHAS; EC 2.2.1.6; Acetohydroxy-acid synthase large subunit; ALS; Vegetative protein 105; VEG105 (uncharacterized)
to candidate WP_089302444.1 CHB84_RS16125 glyoxylate carboligase
Query= curated2:P37251 (574 letters) >NCBI__GCF_900188115.1:WP_089302444.1 Length = 608 Score = 317 bits (811), Expect = 1e-90 Identities = 193/553 (34%), Positives = 297/553 (53%), Gaps = 27/553 (4%) Query: 18 MSGALMLIESLKKEKVEMIFGYPGGAVLPIYDKLYNSGLV-HILPRHEQGAIHAAEGYAR 76 M+ A +E LK+E V FG PG A+ P+Y + +SG + H+L RH +GA H AEGY R Sbjct: 4 MTAARAAVEVLKREGVSDAFGIPGAAINPLYAAMRDSGGIDHVLARHVEGASHMAEGYTR 63 Query: 77 VS-GKPGVVIATSGPGATNLVTGLADAMIDSLPLVVFTGQVATSVIGSDAFQEADILGIT 135 + G GV I TSGP T+++TGL A DS+P++ TGQ S + + FQ DI I Sbjct: 64 TAAGNIGVCIGTSGPAGTDMITGLYSASADSIPILCITGQAPRSRLHKEDFQAVDIPSIA 123 Query: 136 MPVTKHSYQVRQPEDLPRIIKEAFHIATTGRPGPVLIDIPKDVATIEGEFSYDHEMNLPG 195 P+TK + V +P +P + AFH +GRPGPVLID+P DV E EF D +P Sbjct: 124 KPLTKMALTVLEPSQVPGAFQRAFHEMRSGRPGPVLIDLPLDVQQSEIEFDPDTYEPMPV 183 Query: 196 YQPTTEPNYLQIRKLVEAVSSAKKPVILAGAGVLHGKASEELKNYAEQQQIPVAHTLLGL 255 ++P+ QI K + + A++P+I+AG G+++ +S+ L ++AE +PV TL+G Sbjct: 184 HRPSA--TRAQIEKALGMLCRAERPLIVAGGGIINADSSDLLVSFAETVGVPVVPTLMGW 241 Query: 256 GGFPADHPLFLGMAGMHGTYT-ANMALHECDLLISIGARFDDRVTGNLKHFARNAKIAHI 314 G P DH L GMAG+ + N L E D ++ IG R+ +R TG L+ + R H+ Sbjct: 242 GSIPDDHELMAGMAGLQTAHRYGNATLLESDFVLGIGNRWANRHTGGLETYTRGRTFVHV 301 Query: 315 DIDPAEIGKIMKTQIPVVGDSKIVLQELI------KQDGKQSDSSEWKKQLAEWKEE-YP 367 DI+P +IG++ + D+ L+ + G+ D W + AE KE + Sbjct: 302 DIEPTQIGRVFAPDYGITSDAGAALELFADIAHEWAEQGQLPDRRAWVRDCAERKEALHR 361 Query: 368 LWYVDNEEEGFKPQKLIEYIHQFTKGEAIVATDVGQHQMWSAQFYPFQKADKWVTSGGLG 427 + DN KPQ++ E +++ E + +G Q+ +AQF + W+ G G Sbjct: 362 RTHFDNVP--IKPQRVYEEMNRAFGPETRYVSSIGLSQIAAAQFLHVYRPRHWINCGQAG 419 Query: 428 TMGFGLPAAIGAQLAEKDATVVAVVGDGGFQMTLQELDVIRELNLPVKVVILNNACLGMV 487 +G+ +PAA+G A+ +ATVVA+ GD Q L+EL V + NLP V++NN+ LG++ Sbjct: 420 PLGWTVPAALGVCKADPEATVVALSGDYDLQFLLEELAVGAQFNLPYVHVVVNNSYLGLI 479 Query: 488 RQWQEIFYEERYSESKF---------ASQPDFVKLSEAYGIKGIRISSEAEAKEKLEEA- 537 RQ Q F + + F A D +K++E G K +R++ + +EA Sbjct: 480 RQAQRQFDMDYCVQLSFDNINTPELGAYGVDHLKVAEGLGCKALRVTEPDQLLPAFDEAR 539 Query: 538 ---LTSREPVVID 547 L R PV+++ Sbjct: 540 KLMLEYRVPVLVE 552 Lambda K H 0.317 0.135 0.391 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 841 Number of extensions: 38 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 574 Length of database: 608 Length adjustment: 37 Effective length of query: 537 Effective length of database: 571 Effective search space: 306627 Effective search space used: 306627 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.6 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Jul 25 2024. The underlying query database was built on Jul 25 2024.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory