Align L-arabinonate dehydratase; ArDHT; D-fuconate dehydratase; Galactonate dehydratase; L-arabonate dehydratase; EC 4.2.1.25; EC 4.2.1.67; EC 4.2.1.6 (characterized)
to candidate 208900 DVU3373 dihydroxy-acid dehydratase (TIGR)
Query= SwissProt::B5ZZ34 (579 letters) >FitnessBrowser__DvH:208900 Length = 554 Score = 315 bits (807), Expect = 3e-90 Identities = 193/546 (35%), Positives = 302/546 (55%), Gaps = 20/546 (3%) Query: 27 HRGWLKNQGYPHDLFDGRPVIGILNTWSDMTPCNGHLRELAEKVKAGVWEAGGFPLEVPV 86 HR L G + RP++G++N +++ P + HL ++AE VKAGV AGG PLE P Sbjct: 15 HRSLLHALGLTREEL-ARPLVGVVNAANEVVPGHIHLDDIAEAVKAGVRAAGGTPLEFPA 73 Query: 87 FSASEN-TFRPTAMMY----RNLAALAVEEAIRGQPMDGCVLLVGCDKTTPSLLMGAASC 141 + + M + R L A ++E P D V + CDK+ P +LM Sbjct: 74 IAVCDGLAMNHEGMRFSLPSRELIADSIEIMATAHPFDALVFIPNCDKSVPGMLMAMLRL 133 Query: 142 DLPSIVVTGGPMLNGYFRGERVGSGTHLWKFSEMVKAGEMTQAEFLEAEASMSRSSGTCN 201 D+PS++V+GGPML G R T +++ V+ G+MT+AE E G+C Sbjct: 134 DVPSVMVSGGPMLAGATLAGRADLIT-VFEGVGRVQRGDMTEAELDELVEGACPGCGSCA 192 Query: 202 TMGTASTMASMAEALGMALSGNAAIPGVDSRRKVMAQLTGRRIVQMVKDDLKPSEIMTKQ 261 M TA++M +AE +G+AL GN P V + R +A+ G ++++M++ +++P +I+T++ Sbjct: 193 GMFTANSMNCLAETIGLALPGNGTTPAVTAARIRLAKHAGMKVMEMLERNIRPRDIVTEK 252 Query: 262 AFENAIRTNAAIGGSTNAVIHLLAIAGRVGIDLSLDDWDRCGRDVPTIVNLMPSGKYLME 321 A NA+ + A+G STN V+HL A+ G+DL+LD +D+ R P + L P+G + ++ Sbjct: 253 AVANAVAVDMALGCSTNTVLHLPAVFAEAGLDLTLDIFDKVSRKTPNLCKLSPAGHHHIQ 312 Query: 322 EFFYAGGLPVVLKRLGEAGLLHKDALTVSGETVWDEVKDVVN---WNEDVILPAEKALTS 378 + AGG+P V+ L GL+ + A+TV+G TV + + D + + DVI P + + Sbjct: 313 DLHAAGGIPAVMAELDRIGLIDRSAMTVTGRTVGENL-DALGAKVRDADVIRPVDAPYSP 371 Query: 379 SGGIVVLRGNLAPKGAVLKPSAASPHLLVHKGRAVVFEDIDDYKAKINDDNLDIDENCIM 438 GGI +L+G+LAP GAV+K SA +P ++V + A VF+ + I + + + Sbjct: 372 QGGIAILKGSLAPGGAVVKQSAVAPEMMVREAVARVFDSEEAACEAIMGGRIKAGD--AI 429 Query: 439 VMKNCGPKGYPGMAEVGNMGLPPKVLKKGI---LDMVRISDARMSGTAYGTVVLHTSPEA 495 V++ GPKG PGM E+ L P G+ D+ I+D R SG G + H SPEA Sbjct: 430 VIRYEGPKGGPGMREM----LTPTSAIAGMGLGADVALITDGRFSGGTRGAAIGHVSPEA 485 Query: 496 AVGGPLAVVKNGDMIELDVPNRRLHLDISDEELARRLAEWQPNHDLPTSGYAFLHQQHVE 555 A GGP+ +V+ GD I +D+P R L L + ++ELARR A + P TS + + V Sbjct: 486 AEGGPIGLVQEGDRIRIDIPARALDLLVDEDELARRRAAFVPVEKEITSPLLRRYARMVS 545 Query: 556 GADTGA 561 A TGA Sbjct: 546 SAATGA 551 Lambda K H 0.318 0.135 0.408 Gapped Lambda K H 0.267 0.0410 0.140 Matrix: BLOSUM62 Gap Penalties: Existence: 11, Extension: 1 Number of Sequences: 1 Number of Hits to DB: 887 Number of extensions: 54 Number of successful extensions: 6 Number of sequences better than 1.0e-02: 1 Number of HSP's gapped: 1 Number of HSP's successfully gapped: 1 Length of query: 579 Length of database: 554 Length adjustment: 36 Effective length of query: 543 Effective length of database: 518 Effective search space: 281274 Effective search space used: 281274 Neighboring words threshold: 11 Window for multiple hits: 40 X1: 16 ( 7.3 bits) X2: 38 (14.6 bits) X3: 64 (24.7 bits) S1: 41 (21.7 bits) S2: 53 (25.0 bits)
This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.
Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.
A candidate for a step is "high confidence" if either:
Otherwise, a candidate is "medium confidence" if either:
Other blast hits with at least 50% coverage are "low confidence."
Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:
GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).
For more information, see:
If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know
by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory