GapMind for catabolism of small carbon sources

 

Alignments for a candidate for pcaF in Shewanella oneidensis MR-1

Align β-ketoadipyl-CoA thiolase (EC 2.3.1.174; EC 2.3.1.223) (characterized)
to candidate 199217 SO0020 fatty oxidation complex, beta subunit (NCBI ptt file)

Query= metacyc::MONOMER-15952
         (401 letters)



>FitnessBrowser__MR1:199217
          Length = 387

 Score =  309 bits (791), Expect = 1e-88
 Identities = 183/404 (45%), Positives = 242/404 (59%), Gaps = 20/404 (4%)

Query: 1   MNEALIIDAVRTPIGRY-AGALASVRADDLGAIPLKALIARHPQLDWSAVDDVIYGCANQ 59
           M +A+I+D +RTP+GR  AG   +VRA+ L A  +K L+ R+PQLD + ++DVI+GC  Q
Sbjct: 1   MKQAVIVDCIRTPMGRSKAGVFRNVRAETLSAELMKGLLLRNPQLDPNTIEDVIWGCVQQ 60

Query: 60  AGEDNRNVARMAALLAGLPVSVPGTTLNRLCGSGLDAVGSAARALRCGEAGLMLAGGVES 119
             E   N+AR A+LLAG+P +    T+NRLCGS ++A+  AARA+  G     + GGVE 
Sbjct: 61  TLEQGFNIARNASLLAGIPKTAGAVTVNRLCGSSMEAIHQAARAIMTGMGDTFIIGGVEH 120

Query: 120 MSRAPFVMGKSEQAFGRSAEIFDTTIGWRFVNKLMQQGFGIDSMPETAENVAAQFNISRA 179
           M   P   G             D   G    N + +       M  TAE +     I+R 
Sbjct: 121 MGHVPMNHG------------VDFHPG--LANNVAKAS---GMMGLTAEMLGKLHGITRE 163

Query: 180 DQDAFALRSQHKAAAAIANGRLAKEIVAVEIAQRKGPAKIVEHDEHPRGDTTLEQLAKLG 239
            QDAFA+RS  +A AA   GR AKEI  +E     G    V  DE  R +TT+E LA L 
Sbjct: 164 QQDAFAVRSHQRAYAATIEGRFAKEIYGIEGHDATGALIKVLQDEVIRPETTMESLAVLR 223

Query: 240 TPFRQ-GGSVTAGNASGVNDGACALLLASSEAAQRHGLKARARVVGMATAGVEPRIMGIG 298
             F    G+VTAG +S ++DGA A+L+     A+  GL  RAR+  MA AG +  IMG G
Sbjct: 224 PVFDPVNGTVTAGTSSALSDGASAMLIMEESKARALGLPIRARIRSMAVAGCDAAIMGYG 283

Query: 299 PVPATRKVLELTGLALADMDVIELNEAFAAQGLAVLRELGLAD-DDERVNPNGGAIALGH 357
           PVPAT+K L   G+ + D+DVIELNEAFAAQ L  +++LGL D  DE++N NGGAIALGH
Sbjct: 284 PVPATQKALARAGITVNDLDVIELNEAFAAQSLPCVKDLGLLDVVDEKINLNGGAIALGH 343

Query: 358 PLGMSGARLVTTALHELEERQGRYALCTMCIGVGQGIALIIERI 401
           PLG SGAR+ TT ++ +E +     L TMCIG+GQGIA + ER+
Sbjct: 344 PLGCSGARISTTLINLMEHKDATLGLATMCIGLGQGIATVFERV 387


Lambda     K      H
   0.319    0.134    0.384 

Gapped
Lambda     K      H
   0.267   0.0410    0.140 


Matrix: BLOSUM62
Gap Penalties: Existence: 11, Extension: 1
Number of Sequences: 1
Number of Hits to DB: 451
Number of extensions: 24
Number of successful extensions: 5
Number of sequences better than 1.0e-02: 1
Number of HSP's gapped: 2
Number of HSP's successfully gapped: 1
Length of query: 401
Length of database: 387
Length adjustment: 31
Effective length of query: 370
Effective length of database: 356
Effective search space:   131720
Effective search space used:   131720
Neighboring words threshold: 11
Window for multiple hits: 40
X1: 16 ( 7.4 bits)
X2: 38 (14.6 bits)
X3: 64 (24.7 bits)
S1: 41 (21.8 bits)
S2: 50 (23.9 bits)

This GapMind analysis is from Apr 09 2024. The underlying query database was built on Sep 17 2021.

Links

Downloads

Related tools

About GapMind

Each pathway is defined by a set of rules based on individual steps or genes. Candidates for each step are identified by using ublast (a fast alternative to protein BLAST) against a database of manually-curated proteins (most of which are experimentally characterized) or by using HMMer with enzyme models (usually from TIGRFam). Ublast hits may be split across two different proteins.

A candidate for a step is "high confidence" if either:

where "other" refers to the best ublast hit to a sequence that is not annotated as performing this step (and is not "ignored").

Otherwise, a candidate is "medium confidence" if either:

Other blast hits with at least 50% coverage are "low confidence."

Steps with no high- or medium-confidence candidates may be considered "gaps." For the typical bacterium that can make all 20 amino acids, there are 1-2 gaps in amino acid biosynthesis pathways. For diverse bacteria and archaea that can utilize a carbon source, there is a complete high-confidence catabolic pathway (including a transporter) just 38% of the time, and there is a complete medium-confidence pathway 63% of the time. Gaps may be due to:

GapMind relies on the predicted proteins in the genome and does not search the six-frame translation. In most cases, you can search the six-frame translation by clicking on links to Curated BLAST for each step definition (in the per-step page).

For more information, see:

If you notice any errors or omissions in the step descriptions, or any questionable results, please let us know

by Morgan Price, Arkin group, Lawrence Berkeley National Laboratory